Skip to content
Related Articles

Related Articles

Improve Article

Number of ways to choose an integer such that there are exactly K elements greater than it in the given array

  • Difficulty Level : Easy
  • Last Updated : 28 May, 2021

Given an array arr[] of N elements and an integer K, the task is to find the number of ways of choosing an integer X such that there are exactly K elements in the array that are greater than X.
Examples: 
 

Input: arr[] = {1, 3, 4, 6, 8}, K = 2 
Output:
X can be chosen as 4 or 5
Input: arr[] = {1, 1, 1}, K = 2 
Output:
No matter what integer you choose as X, it’ll never have exactly 2 elements greater than it in the given array. 
 

 

Approach: 
We count total number of distinct elements in the array. If the count of distinct elements is less than or equal to k, then 0 permutations possible. Else count is equal to number of distinct elements minus k.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to returns the required count of integers
int countWays(int n, int arr[], int k)
{
 
    if (k <= 0 || k >= n)
        return 0;
 
    unordered_set<int> s(arr, arr+n);
    if (s.size() <= k)
       return 0;
 
    // Return the required count
    return s.size() - k;
}
 
// Driver code
int main()
{
    int arr[] = { 100, 200, 400, 50 };
    int k = 3;
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << countWays(n, arr, k);
}

Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Function to returns the
// required count of integers
static int countWays(int n, int arr[], int k)
{
 
    if (k <= 0 || k >= n)
        return 0;
    Set<Integer> s = new HashSet<Integer>();
    for(int i = 0; i < n; i++)
        s.add(arr[i]);
         
    if (s.size() <= k)
        return 0;
 
    // Return the required count
    return s.size() - k;
}
 
// Driver code
public static void main(String args[])
{
    int arr[] = { 100, 200, 400, 50 };
    int k = 3;
    int n = arr.length;
    System.out.println(countWays(n, arr, k));
}
}
 
// This code id contributed by
// Surendra_Gangwar

Python3




# Python 3 implementation of the approach
 
# Function to returns the required count of integers
def countWays(n, arr, k) :
 
    if (k <= 0 or k >= n) :
        return 0
 
    s = set()
    for element in arr :
        s.add(element)
         
    if (len(s) <= k) :
        return 0;
 
    # Return the required count
    return len(s) - k;
 
 
# Driver code
if __name__ == "__main__" :
     
    arr = [ 100, 200, 400, 50 ]
    k = 3;
    n = len(arr) ;
    print(countWays(n, arr, k))
 
# This code is contributed by Ryuga

C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
    // Function to returns the
    // required count of integers
    static int countWays(int n, int []arr, int k)
    {
 
        if (k <= 0 || k >= n)
            return 0;
        HashSet<int> s = new HashSet<int>();
        for(int i = 0; i < n; i++)
            s.Add(arr[i]);
 
        if (s.Count <= k)
            return 0;
 
        // Return the required count
        return s.Count - k;
    }
 
    // Driver code
    public static void Main(String []args)
    {
        int []arr = { 100, 200, 400, 50 };
        int k = 3;
        int n = arr.Length;
        Console.WriteLine(countWays(n, arr, k));
    }
}
 
// This code is contributed by Rajput-Ji

PHP




<?php
// PHP implementation of the approach
 
// Function to returns the required
// count of integers
function countWays($n, $arr, $k)
{
    if ($k <= 0 || $k >= $n)
        return 0;
 
    $s = array();
    foreach ($arr as $value)
        array_push($s, $value);
    $s = array_unique($s);
         
    if (count($s) <= $k)
        return 0;
 
    // Return the required count
    return count($s) - $k;
}
 
// Driver code
$arr = array(100, 200, 400, 50);
$k = 3;
$n = count($arr);
print(countWays($n, $arr, $k));
 
// This code is contributed by mits
?>

Javascript




<script>
 
// JavaScript Program to implement
// the above approach
 
// Function to returns the
// required count of letegers
function countWays(n, arr, k)
{
 
    if (k <= 0 || k >= n)
        return 0;
    let s = new Set();
    for(let i = 0; i < n; i++)
        s.add(arr[i]);
         
    if (s.size <= k)
        return 0;
 
    // Return the required count
    return s.size - k;
}
 
// Driver Code
 
    let arr = [ 100, 200, 400, 50 ];
    let k = 3;
    let n = arr.length;
    document.write(countWays(n, arr, k));
 
</script>
Output: 



1

 

Time Complexity: O(N * log(N))
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :