Number of ways to change the Array such that largest element is LCM of array
Given an array arr[], the task is to count the number of the unique arrays can be formed by updating the elements of the given array to any element in the range [1, arr[i]] such that the Least common multiple of the updated array is equal to the maximum element.
Examples:
Input: arr[] = {6, 3}
Output: 13
Explanation:
Possible Arrays are –
{[1, 1], [1, 2], [2, 1], [2, 2], [1, 3],
[3, 1], [3, 3], [4, 1], [4, 2], [5, 1],
[6, 1], [6, 2], [6, 3]}Input: arr[] = {1, 4, 3, 2}
Output: 15
Approach:
- For the maximum element to be the LCM of the array, we need to fix the maximum element of the array.
- As, we have fixed some number
as maximum, now for the LCM to be
, we’ll need to ensure that every element in the array is some multiple of
including
- We’ll find the factors for the number
and find the number of ways to place them in the array.
- Let’s say that the factors of
be
. The count of factors is
.
- Let’s assume that number of positions that
be
means there are
number of positions that have number in the array which is greater than equal to
and let
have
positions and
have
positions.
- Now, number of ways to distribute x [/Tex] in
positions,
in
positions and
in
positions are
and so on.
- Now, we’ll have to subtract those ways which have LCM
but
is not there.
- We’ll need to subtract
from the ways.
- We’ll use BIT(Binary Indexed Tree) to find number of positions greater than some number
.
Below is the implementation of the above approach:
C++
// C++ implementation to find the // Number of ways to change the array // such that maximum element of the // array is the LCM of the array #include <bits/stdc++.h> using namespace std; // Modulo const int MOD = 1e9 + 7; const int N = 1e5 + 5; // Fenwick tree to find number // of indexes greater than x vector< int > BIT(N, 0); // Function to compute // x ^ y % MOD int power( int x, int y) { if (x == 0) return 0; int ans = 1; // Loop to compute the // x^y % MOD while (y > 0) { if (y & 1) ans = (1LL * ans * x) % MOD; x = (1LL * x * x) % MOD; y >>= 1; } return ans; } // Function to update the binary // indexed tree void updateBIT( int idx, int val) { assert (idx > 0); while (idx < N) { BIT[idx] += val; idx += idx & -idx; } } // Function to find the prefix sum // upto the current index int queryBIT( int idx) { int ans = 0; while (idx > 0) { ans += BIT[idx]; idx -= idx & -idx; } return ans; } // Function to find the number of // ways to change the array such // that the LCM of array is // maximum element of the array int numWays( int arr[], int n) { int mx = 0; for ( int i = 0; i < n; i++) { // Updating BIT with the // frequency of elements updateBIT(arr[i], 1); // Maximum element in the array mx = max(mx, arr[i]); } // 1 is for every element // is 1 in the array; int ans = 1; for ( int i = 2; i <= mx; i++) { // Vector for storing the factors vector< int > factors; for ( int j = 1; j * j <= i; j++) { // finding factors of i if (i % j == 0) { factors.push_back(j); if (i / j != j) factors.push_back(i / j); } } // Sorting in descending order sort(factors.rbegin(), factors.rend()); int cnt = 1; // for storing number of indexex // greater than the i - 1 element int prev = 0; for ( int j = 0; j < factors.size(); j++) { // Number of remaining factors int remFactors = int (factors.size()) - j; // Number of indexes in the array // with element factor[j] and above int indexes = n - queryBIT(factors[j] - 1); // Multiplying count with // remFcators ^ (indexes - prev) cnt = (1LL * cnt * power(remFactors, indexes - prev)) % MOD; prev = max(prev, indexes); } // Remove those counts which have // lcm as i but i is not present factors.erase(factors.begin()); int toSubtract = 1; prev = 0; // Loop to find the count which have // lcm as i but i is not present for ( int j = 0; j < factors.size(); j++) { int remFactors = int (factors.size()) - j; int indexes = n - queryBIT(factors[j] - 1); toSubtract = (1LL * toSubtract * power(remFactors, indexes - prev)); prev = max(prev, indexes); } // Adding cnt - toSubtract to answer ans = (1LL * ans + cnt - toSubtract + MOD) % MOD; } return ans; } // Driver Code int main() { int arr[] = { 6, 3 }; int n = sizeof (arr) / sizeof (arr[0]); int ans = numWays(arr, n); cout << ans << endl; return 0; } |
Python3
# Python implementation to find the # Number of ways to change the array # such that maximum element of the # array is the LCM of the array # Modulo MOD = int ( 1e9 ) + 9 MAXN = int ( 1e5 ) + 5 # Fenwick tree to find number # of indexes greater than x BIT = [ 0 for _ in range (MAXN)] # Function to compute # x ^ y % MOD def power(x, y): if x = = 0 : return 0 ans = 1 # Loop to compute the # x ^ y % MOD while y > 0 : if y % 2 = = 1 : ans = (ans * x) % MOD x = (x * x) % MOD y = y / / 2 return ans # Function to update the # Binary Indexed Tree def updateBIT(idx, val): # Loop to update the BIT while idx < MAXN: BIT[idx] + = val idx + = idx & ( - idx) # Function to find # prefix sum upto idx def queryBIT(idx): ans = 0 while idx > 0 : ans + = BIT[idx] idx - = idx & ( - idx) return ans # Function to find number of ways # to change the array such that # MAX of array is same as LCM def numWays(arr): mx = 0 # Updating BIT with the # frequency of elements for i in arr: updateBIT(i, 1 ) # Maximum element # in the array mx = max (mx, i) ans = 1 for i in range ( 2 , mx + 1 ): # For storing factors of i factors = [] for j in range ( 1 , i + 1 ): if j * j > i: break # Finding factors of i if i % j = = 0 : factors.append(j) if i / / j ! = j: factors.append(i / / j) # Sorting in descending order factors.sort() factors.reverse() # For storing ans cnt = 1 # For storing number of indexes # greater than the i - 1 element prev = 0 for j in range ( len (factors)): # Number of remaining factors remFactors = len (factors) - j # Number of indexes in the array # with element factor[j] and above indexes = len (arr) - queryBIT(factors[j] - 1 ) # Multiplying count with # remFcators ^ (indexes - prev) cnt = (cnt * power(remFactors, \ indexes - prev)) % MOD prev = max (prev, indexes) # Remove those counts which have # lcm as i but i is not present factors.remove(factors[ 0 ]) toSubtract = 1 prev = 0 for j in range ( len (factors)): remFactors = len (factors) - j indexes = len (arr) - queryBIT(factors[j] - 1 ) toSubtract = (toSubtract * \ power(remFactors, indexes - prev)) prev = max (prev, indexes) # Adding cnt - toSubtract to ans; ans = (ans + cnt - toSubtract + MOD) % MOD; return ans # Driver Code if __name__ = = "__main__" : arr = [ 1 , 4 , 3 , 2 ] ans = numWays(arr); print (ans) |
Output:
13
Time Complexity: , where
is the maximum element in the array.
Please Login to comment...