Related Articles

Related Articles

Number of ways to arrange a word such that all vowels occur together
  • Difficulty Level : Medium
  • Last Updated : 07 Dec, 2020

Given a word containing vowels and consonants. The task is to find that in how many ways to word can be arranged so that the vowels always come together. Given that the length of the word <10.

Examples: 

Input: str = "geek"
Output: 6
Ways such that both 'e' comes together are 6 
i.e. geek, gkee, kgee, eekg, eegk, keeg

Input: str = "corporation"
Output: 50400

Approach: Since word contains vowels and consonants together. All vowels are needed to remain together then we will take all vowels as a single letter. 

As, in the word ‘geeksforgeeks’, we can treat the vowels “eeoee” as one letter. 
Thus, we have gksfrgks (eeoee)
This has 9 (8 + 1) letters of which g, k, s each occurs 2 times and the rest are different.
The number of ways arranging these letters = 9!/(2!)x(2!)x(2!) = 45360 ways
Now, 5 vowels in which ‘e’ occurs 4 times and ‘o’ occurs 1 time, can be arranged in 5! /4! = 5 ways.
Required number of ways = (45360 x 5) = 226800 
 

Below is the implementation of the above approach: 



C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to calculate the no. of ways
// to arrange the word having vowels together
#include <bits/stdc++.h>
#define ll long long int
using namespace std;
 
// Factorial of a number
ll fact(int n)
{
    ll f = 1;
    for (int i = 2; i <= n; i++)
        f = f * i;
    return f;
}
 
// calculating ways for arranging consonants
ll waysOfConsonants(int size1, int freq[])
{
    ll ans = fact(size1);
    for (int i = 0; i < 26; i++) {
 
        // Ignore vowels
        if (i == 0 || i == 4 || i == 8 || i == 14 || i == 20)
            continue;
        else
            ans = ans / fact(freq[i]);
    }
 
    return ans;
}
 
// calculating ways for arranging vowels
ll waysOfVowels(int size2, int freq[])
{
    return fact(size2) / (fact(freq[0]) * fact(freq[4]) * fact(freq[8])
                    * fact(freq[14]) * fact(freq[20]));
}
 
// Function to count total no. of ways
ll countWays(string str)
{
 
    int freq[26] = { 0 };
    for (int i = 0; i < str.length(); i++)
        freq[str[i] - 'a']++;
 
    // Count vowels and consonant
    int vowel = 0, consonant = 0;
    for (int i = 0; i < str.length(); i++) {
 
        if (str[i] != 'a' && str[i] != 'e' && str[i] != 'i'
            && str[i] != 'o' && str[i] != 'u')
            consonant++;
        else
            vowel++;
    }
 
    // total no. of ways
    return waysOfConsonants(consonant+1, freq) *
           waysOfVowels(vowel, freq);
}
 
// Driver code
int main()
{
    string str = "geeksforgeeks";
 
    cout << countWays(str) << endl;
 
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to calculate the no. of
// ways to arrange the word having
// vowels together
import java.util.*;
  
class GFG{
  
// Factorial of a number
static int fact(int n)
{
    int f = 1;
    for(int i = 2; i <= n; i++)
        f = f * i;
          
    return f;
}
  
// Calculating ways for arranging consonants
static int waysOfConsonants(int size1,
                            int []freq)
{
    int ans = fact(size1);
    for(int i = 0; i < 26; i++)
    {
          
        // Ignore vowels
        if (i == 0 || i == 4 || i == 8 ||
            i == 14 || i == 20)
            continue;
        else
            ans = ans / fact(freq[i]);
    }
    return ans;
}
  
// Calculating ways for arranging vowels
static int waysOfVowels(int size2, int [] freq)
{
    return fact(size2) / (fact(freq[0]) *
          fact(freq[4]) * fact(freq[8]) *
         fact(freq[14]) * fact(freq[20]));
}
  
// Function to count total no. of ways
static int countWays(String str)
{
    int []freq = new int [200];
    for(int i = 0; i < 200; i++)
        freq[i] = 0;
          
    for(int i = 0; i < str.length(); i++)
        freq[str.charAt(i) - 'a']++;
          
    // Count vowels and consonant
    int vowel = 0, consonant = 0;
    for(int i = 0; i < str.length(); i++)
    {
        if (str.charAt(i) != 'a' && str.charAt(i) != 'e' &&
            str.charAt(i) != 'i' && str.charAt(i) != 'o' &&
            str.charAt(i) != 'u')
            consonant++;
        else
            vowel++;
    }
  
    // Total no. of ways
    return waysOfConsonants(consonant + 1, freq) *
           waysOfVowels(vowel, freq);
}
  
// Driver code
public static void main(String []args)
{
    String str = "geeksforgeeks";
  
    System.out.println(countWays(str));
}
}
 
// This code is contributed by rutvik_56

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to calculate
# the no. of ways to arrange
# the word having vowels together
 
# Factorial of a number
def fact(n):
 
    f = 1
    for i in range(2, n + 1):
        f = f * i
    return f
 
# calculating ways for
# arranging consonants
def waysOfConsonants(size1, freq):
 
    ans = fact(size1)
    for i in range(26):
 
        # Ignore vowels
        if (i == 0 or i == 4 or
            i == 8 or i == 14 or
            i == 20):
            continue
        else:
            ans = ans // fact(freq[i])
 
    return ans
 
# calculating ways for
# arranging vowels
def waysOfVowels(size2, freq):
 
    return (fact(size2) // (fact(freq[0]) *
            fact(freq[4]) * fact(freq[8]) *
            fact(freq[14]) * fact(freq[20])))
 
# Function to count total no. of ways
def countWays(str1):
 
    freq = [0] * 26
    for i in range(len(str1)):
        freq[ord(str1[i]) -
             ord('a')] += 1
 
    # Count vowels and consonant
    vowel = 0
    consonant = 0
    for i in range(len(str1)):
 
        if (str1[i] != 'a' and str1[i] != 'e' and
            str1[i] != 'i' and str1[i] != 'o' and
            str1[i] != 'u'):
            consonant += 1
        else:
            vowel += 1
 
    # total no. of ways
    return (waysOfConsonants(consonant + 1, freq) *
            waysOfVowels(vowel, freq))
 
# Driver code
if __name__ == "__main__":
 
    str1 = "geeksforgeeks"
    print(countWays(str1))
 
# This code is contributed by Chitranayal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to calculate the no. of
// ways to arrange the word having
// vowels together
using System.Collections.Generic;
using System;
 
class GFG{
 
// Factorial of a number
static int fact(int n)
{
    int f = 1;
    for(int i = 2; i <= n; i++)
        f = f * i;
         
    return f;
}
 
// Calculating ways for arranging consonants
static int waysOfConsonants(int size1,
                            int []freq)
{
    int ans = fact(size1);
    for(int i = 0; i < 26; i++)
    {
         
        // Ignore vowels
        if (i == 0 || i == 4 || i == 8 ||
            i == 14 || i == 20)
            continue;
        else
            ans = ans / fact(freq[i]);
    }
    return ans;
}
 
// Calculating ways for arranging vowels
static int waysOfVowels(int size2, int [] freq)
{
    return fact(size2) / (fact(freq[0]) *
          fact(freq[4]) * fact(freq[8]) *
         fact(freq[14]) * fact(freq[20]));
}
 
// Function to count total no. of ways
static int countWays(string str)
{
    int []freq = new int [200];
    for(int i = 0; i < 200; i++)
        freq[i] = 0;
         
    for(int i = 0; i < str.Length; i++)
        freq[str[i] - 'a']++;
         
    // Count vowels and consonant
    int vowel = 0, consonant = 0;
    for(int i = 0; i < str.Length; i++)
    {
        if (str[i] != 'a' && str[i] != 'e' &&
            str[i] != 'i' && str[i] != 'o' &&
            str[i] != 'u')
            consonant++;
        else
            vowel++;
    }
 
    // Total no. of ways
    return waysOfConsonants(consonant + 1, freq) *
           waysOfVowels(vowel, freq);
}
 
// Driver code
public static void Main()
{
    string str = "geeksforgeeks";
 
    Console.WriteLine(countWays(str));
}
}
 
// This code is contributed by Stream_Cipher

chevron_right


Output: 

226800

 

Further Optimizations: We can pre-compute required factorial values to avoid re-computations.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :