Skip to content
Related Articles

Related Articles

Improve Article
Number of valid indices in the permutation of first N natural numbers
  • Difficulty Level : Easy
  • Last Updated : 12 Apr, 2021

Given a permutation P of first N natural numbers. The task is to find the number of i’s such that Pi ≤ Pj for all 1 ≤ j ≤ i in the permutation of first N natural numbers.
Examples: 
 

Input: arr[] = {4, 2, 5, 1, 3} 
Output:
0, 1 and 3 are such indices.
Input: arr[] = {4, 3, 2, 1} 
Output:
 

 

Approach: For i = 1, …, N, define Mi = min{ Pj, 1 ≤ j ≤ i}. Now, when i(1 ≤ i ≤ N) is fixed, Mi = Pi holds if and only if for all j(1 ≤ j ≤ i), Pi ≤ Pj holds. Therefore, it is enough to calculate all the Mi. These can be calculated in the increasing order of i, so the problem could be solved in a total of O(N) time.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the number of i's
// such that Pi <= Pj for all 1 <= j <= i
// in the permutation of first N natural numbers
int min_index(int p[], int n)
{
 
    // To store the count of such indices
    int ans = 0;
 
    // Store the mini value
    int mini = INT_MAX;
 
    // For all the elements
    for (int i = 0; i < n; i++) {
        if (p[i] <= mini)
            mini = p[i];
 
        if (mini == p[i])
            ans++;
    }
 
    // Return the required answer
    return ans;
}
 
// Driver code
int main()
{
    int P[] = { 4, 2, 5, 1, 3 };
    int n = sizeof(P) / sizeof(int);
 
    cout << min_index(P, n);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
 
    static int INT_MAX = Integer.MAX_VALUE;
     
    // Function to return the number of i's
    // such that Pi <= Pj for all 1 <= j <= i
    // in the permutation of first N natural numbers
    static int min_index(int p[], int n)
    {
     
        // To store the count of such indices
        int ans = 0;
     
        // Store the mini value
        int mini = INT_MAX;
     
        // For all the elements
        for (int i = 0; i < n; i++)
        {
            if (p[i] <= mini)
                mini = p[i];
     
            if (mini == p[i])
                ans++;
        }
     
        // Return the required answer
        return ans;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int P[] = { 4, 2, 5, 1, 3 };
        int n = P.length;
     
        System.out.println(min_index(P, n));
    }
}
 
// This code is contributed by AnkitRai01

Python3




# Python3 implementation of the approach
import sys
 
INT_MAX = sys.maxsize
 
# Function to return the number of i's
# such that Pi <= Pj for all 1 <= j <= i
# in the permutation of first N natural numbers
def min_index(p, n) :
 
    # To store the count of such indices
    ans = 0;
 
    # Store the mini value
    mini = INT_MAX;
 
    # For all the elements
    for i in range(n) :
        if (p[i] <= mini) :
            mini = p[i];
 
        if (mini == p[i]) :
            ans += 1;
 
    # Return the required answer
    return ans;
 
# Driver code
if __name__ == "__main__" :
 
    P = [ 4, 2, 5, 1, 3 ];
    n = len(P);
    print(min_index(P, n));
 
# This code is contributed by AnkitRai01

C#




// C# implementation of the approach
using System;
 
class GFG
{
 
    static int INT_MAX = int.MaxValue;
     
    // Function to return the number of i's
    // such that Pi <= Pj for all 1 <= j <= i
    // in the permutation of first N natural numbers
    static int min_index(int []p, int n)
    {
     
        // To store the count of such indices
        int ans = 0;
     
        // Store the mini value
        int mini = INT_MAX;
     
        // For all the elements
        for (int i = 0; i < n; i++)
        {
            if (p[i] <= mini)
                mini = p[i];
     
            if (mini == p[i])
                ans++;
        }
     
        // Return the required answer
        return ans;
    }
     
    // Driver code
    public static void Main ()
    {
        int []P = { 4, 2, 5, 1, 3 };
        int n = P.Length;
     
        Console.WriteLine(min_index(P, n));
    }
}
 
// This code is contributed by AnkitRai01

Javascript




<script>
 
// JavaScript implementation of the approach
 
// Function to return the number of i's
// such that Pi <= Pj for all 1 <= j <= i
// in the permutation of first N natural numbers
function min_index(p, n)
{
 
    // To store the count of such indices
    let ans = 0;
 
    // Store the mini value
    let mini = Number.MAX_SAFE_INTEGER;
 
    // For all the elements
    for (let i = 0; i < n; i++) {
        if (p[i] <= mini)
            mini = p[i];
 
        if (mini == p[i])
            ans++;
    }
 
    // Return the required answer
    return ans;
}
 
// Driver code
 
    let P = [ 4, 2, 5, 1, 3 ];
    let n = P.length;
 
    document.write(min_index(P, n));
 
// This code is contributed by Manoj.
 
</script>
Output: 
3

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live




My Personal Notes arrow_drop_up
Recommended Articles
Page :