Number of unique pairs in an array
Given an array of N elements, the task is to find all the unique pairs that can be formed using the elements of a given array.
Examples:
Input: arr[] = {1, 1, 2}
Output: 4
(1, 1), (1, 2), (2, 1), (2, 2) are the only possible pairs.Input: arr[] = {1, 2, 3}
Output: 9
Naive approach: The simple solution is to iterate through every possible pair and add them to a set and then find out the size of the set.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the number // of unique pairs in the array int countUnique( int arr[], int n) { // Set to store unique pairs set<pair< int , int > > s; // Make all possible pairs for ( int i = 0; i < n; i++) for ( int j = 0; j < n; j++) s.insert(make_pair(arr[i], arr[j])); // Return the size of the set return s.size(); } // Driver code int main() { int arr[] = { 1, 2, 2, 4, 2, 5, 3, 5 }; int n = sizeof (arr) / sizeof (arr[0]); cout << countUnique(arr, n); return 0; } |
Java
// Java implementation of the approach import java.awt.Point; import java.util.*; class GFG { // Function to return the number // of unique pairs in the array static int countUnique( int arr[], int n) { // Set to store unique pairs Set<Point> s = new HashSet<>(); // Make all possible pairs for ( int i = 0 ; i < n; i++) for ( int j = 0 ; j < n; j++) s.add( new Point(arr[i], arr[j])); // Return the size of the set return s.size(); } // Driver code public static void main(String[] args) { int arr[] = { 1 , 2 , 2 , 4 , 2 , 5 , 3 , 5 }; int n = arr.length; System.out.print(countUnique(arr, n)); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 implementation of the approach # Function to return the number # of unique pairs in the array def countUnique(arr, n): # Set to store unique pairs s = set () # Make all possible pairs for i in range (n): for j in range (n): s.add((arr[i], arr[j])) # Return the size of the set return len (s) # Driver code arr = [ 1 , 2 , 2 , 4 , 2 , 5 , 3 , 5 ] n = len (arr) print (countUnique(arr, n)) # This code is contributed by ankush_953 |
C#
// C# implementation of the approach using System; using System.Collections; using System.Collections.Generic; class GFG{ public class store : IComparer<KeyValuePair< int , int >> { public int Compare(KeyValuePair< int , int > x, KeyValuePair< int , int > y) { if (x.Key != y.Key) { return x.Key.CompareTo(y.Key); } else { return x.Value.CompareTo(y.Value); } } } // Function to return the number // of unique pairs in the array static int countUnique( int []arr, int n) { // Set to store unique pairs SortedSet<KeyValuePair< int , int >> s = new SortedSet<KeyValuePair< int , int >>( new store()); // Make all possible pairs for ( int i = 0; i < n; i++) for ( int j = 0; j < n; j++) s.Add( new KeyValuePair< int , int >(arr[i], arr[j])); // Return the size of the set return s.Count; } // Driver code public static void Main( string []arg) { int []arr = { 1, 2, 2, 4, 2, 5, 3, 5 }; int n = arr.Length; Console.Write(countUnique(arr, n)); } } // This code is contributed by rutvik_56 |
Javascript
<script> // JavaScript implementation of the approach // Function to return the number // of unique pairs in the array function countUnique(arr,n) { // Set to store unique pairs let s = new Set(); // Make all possible pairs for (let i = 0; i < n; i++) for (let j = 0; j < n; j++) s.add((arr[i], arr[j])); // Return the size of the set return 5*s.size; } // Driver code let arr = [ 1, 2, 2, 4, 2, 5, 3, 5 ]; let n = arr.length; document.write(countUnique(arr, n)); </script> |
25
Time Complexity: Time complexity of the above implementation is O(n2 Log n). We can optimize it to O(n2) using unordered_set with user defined hash function.
Auxiliary Space: O(n)
Efficient approach: First find out the number of unique elements in an array. Let the number of unique elements be x. Then, the number of unique pairs would be x2. This is because each unique element can form a pair with every other unique element including itself.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the number // of unique pairs in the array int countUnique( int arr[], int n) { unordered_set< int > s; for ( int i = 0; i < n; i++) s.insert(arr[i]); int count = pow (s.size(), 2); return count; } // Driver code int main() { int arr[] = { 1, 2, 2, 4, 2, 5, 3, 5 }; int n = sizeof (arr) / sizeof (arr[0]); cout << countUnique(arr, n); return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { // Function to return the number // of unique pairs in the array static int countUnique( int arr[], int n) { HashSet<Integer> s = new HashSet<>(); for ( int i = 0 ; i < n; i++) { s.add(arr[i]); } int count = ( int ) Math.pow(s.size(), 2 ); return count; } // Driver code public static void main(String[] args) { int arr[] = { 1 , 2 , 2 , 4 , 2 , 5 , 3 , 5 }; int n = arr.length; System.out.println(countUnique(arr, n)); } } /* This code has been contributed by PrinciRaj1992*/ |
Python3
# Python3 implementation of the approach # Function to return the number # of unique pairs in the array def countUnique(arr, n): s = set () for i in range (n): s.add(arr[i]) count = pow ( len (s), 2 ) return count # Driver code if __name__ = = "__main__" : arr = [ 1 , 2 , 2 , 4 , 2 , 5 , 3 , 5 ] n = len (arr) print (countUnique(arr, n)) # This code is contributed by Ryuga |
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { // Function to return the number // of unique pairs in the array static int countUnique( int []arr, int n) { HashSet< int > s = new HashSet< int >(); for ( int i = 0; i < n; i++) { s.Add(arr[i]); } int count = ( int ) Math.Pow(s.Count, 2); return count; } // Driver code static void Main() { int []arr = {1, 2, 2, 4, 2, 5, 3, 5}; int n = arr.Length; Console.WriteLine(countUnique(arr, n)); } } // This code has been contributed by mits |
Javascript
<script> // JavaScript Program to implement // the above approach // Function to return the number // of unique pairs in the array function countUnique(arr, n){ let s = new Set(); for (let i = 0; i < n; i++) { s.add(arr[i]); } let count = Math.pow(s.size, 2); return count; } // Driver Code let arr = [ 1, 2, 2, 4, 2, 5, 3, 5 ]; let n = arr.length; document.write(countUnique(arr, n)); </script> |
25
Time Complexity: O(n)
Auxiliary Space: O(n)
Please Login to comment...