Skip to content
Related Articles

Related Articles

Improve Article

Number of times the largest perfect square number can be subtracted from N

  • Difficulty Level : Basic
  • Last Updated : 25 Mar, 2021

Given a number N. At every step, subtract the largest perfect square( ≤ N) from N. Repeat this step while N > 0. The task is to count the number of steps that can be performed. 

Examples: 

Input: N = 85 
Output:
First step, 85 – (9 * 9) = 4 
Second step 4 – (2 * 2) = 0

Input: N = 114 
Output:
First step, 114 – (10 * 10) = 14 
Second step 14 – (3 * 3) = 5 
Third step 5 – (2 * 2) = 1 
Fourth step 1 – (1 * 1) = 0 

Approach: Iteratively subtract the largest perfect square (≤ N) from N while N > 0 and count the number of steps. 
Below is the implementation of the above approach:  



C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of steps
int countSteps(int n)
{
 
    // Variable to store the count of steps
    int steps = 0;
 
    // Iterate while N > 0
    while (n) {
 
        // Get the largest perfect square
        // and subtract it from N
        int largest = sqrt(n);
        n -= (largest * largest);
 
        // Increment steps
        steps++;
    }
 
    // Return the required count
    return steps;
}
 
// Driver code
int main()
{
    int n = 85;
    cout << countSteps(n);
 
    return 0;
}

Java




// Java implementation of the approach
import java.lang.Math;
 
public class GfG{
 
    // Function to return the count of steps
    static int countSteps(int n)
    {
        // Variable to store the count of steps
        int steps = 0;
     
        // Iterate while N > 0
        while (n > 0) {
     
            // Get the largest perfect square
            // and subtract it from N
            int largest = (int)Math.sqrt(n);
            n -= (largest * largest);
     
            // Increment steps
            steps++;
        }
     
        // Return the required count
        return steps;
    }
 
     public static void main(String []args){
         
        int n = 85;
        System.out.println(countSteps(n));
     }
}
 
// This code is contributed by Rituraj Jain

Python3




# Python3 implementation of the approach
from math import sqrt
 
# Function to return the count of steps
def countSteps(n) :
 
    # Variable to store the count of steps
    steps = 0;
 
    # Iterate while N > 0
    while (n) :
 
        # Get the largest perfect square
        # and subtract it from N
        largest = int(sqrt(n));
        n -= (largest * largest);
 
        # Increment steps
        steps += 1;
 
    # Return the required count
    return steps;
     
# Driver code
if __name__ == "__main__" :
 
    n = 85;
    print(countSteps(n));
     
# This code is contributed by Ryuga

C#




// C# implementation of the approach
using System;
 
class GfG
{
 
    // Function to return the count of steps
    static int countSteps(int n)
    {
        // Variable to store the count of steps
        int steps = 0;
     
        // Iterate while N > 0
        while (n > 0)
        {
     
            // Get the largest perfect square
            // and subtract it from N
            int largest = (int)Math.Sqrt(n);
            n -= (largest * largest);
     
            // Increment steps
            steps++;
        }
     
        // Return the required count
        return steps;
    }
 
    // Driver code
    public static void Main()
    {
        int n = 85;
        Console.WriteLine(countSteps(n));
    }
}
 
// This code is contributed by Code_Mech.

PHP




<?php
// PHP implementation of the approach
 
// Function to return the count of steps
function countSteps($n)
{
 
    // Variable to store the count of steps
    $steps = 0;
 
    // Iterate while N > 0
    while ($n)
    {
 
        // Get the largest perfect square
        // and subtract it from N
        $largest = (int)sqrt($n);
        $n -= ($largest * $largest);
 
        // Increment steps
        $steps++;
    }
 
    // Return the required count
    return $steps;
}
 
// Driver code
$n = 85;
echo countSteps($n);
 
// This code is contributed
// by Akanksha Rai
?>

Javascript




<script>
 
// JavaScript implementation of the approach
 
// Function to return the count of steps
function countSteps(n)
{
     
    // Variable to store the count of steps
    let steps = 0;
 
    // Iterate while N > 0
    while (n)
    {
         
        // Get the largest perfect square
        // and subtract it from N
        let largest = Math.floor(Math.sqrt(n));
        n -= (largest * largest);
 
        // Increment steps
        steps++;
    }
 
    // Return the required count
    return steps;
}
 
// Driver code
 
let n = 85;
 
document.write(countSteps(n));
 
// This code is contributed by Manoj.
 
</script>
Output: 
2

 

Time Complexity: O(1)

Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :