Number of times an array can be partitioned repetitively into two subarrays with equal sum

Given an array arr[] of size N, the task is to find the number of times the array can be partitioned repetitively into two subarrays such that the sum of the elements of both the subarrays is the same.

Examples:

Input: arr[] = { 2, 2, 2, 2 }
Output: 3
Explanation:
1. Make the first partition after index 1. Remaining arrays are {2, 2} on the right side and left side both.
2. Consider the left subarray {2, 2}. Make a partition after index 0 of this left subarray.
Now two similar subarrays with one element each i.e. {2} are formed which cannot be sub-divided.
3. Consider the right subarray {2, 2}. Make a partition after index 0 of this left subarray.
Now two similar subarrays with one element each i.e. {2} are formed which cannot be sub-divided.
Hence the output is 3 as the array was partitioned 3 times.

Input: arr[] = {12, 3, 3, 0, 3, 3}
Output: 4
Explanation:
1. The first partition is after index 0. Remaining array is arr[] = {3, 3, 0, 3, 3}.
2. The second partition is after index 1. The remaining array is {3, 3}, and {0, 3, 3}.
3. The third partition is after index 0 in array {3, 3}.
4. The fourth partition is after 1 in the array {0, 3, 3}
The remaining array is {0, 3}, and {3} which cannot be sub-divided.
Hence the output is 4.

Approach:The idea is to use Recursion. Below are the steps:



  1. Find the prefix-sum of the given array arr[] and store it in an array pref[].
  2. Iterate from the start position to the end position.
  3. For each possible partition index(say K), if prefix_sum[K] – prefix_sum[start-1] = prefix_sum[end] – prefix_sum[k] then the partition is valid.
  4. If partition is valid in the above step then proceed with the left and right sub-arrays separately and determine whether these two subarrays forms a valid partion or not.
  5. Repeat the step 3 and 4 for both the left and right partition until any further partition isn’t possible.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Recursion Function to calculate the
// possible splitting
int splitArray(int start, int end,
               int* arr,
               int* prefix_sum)
{
    // If there are less than
    // two elements, we cannot
    // partition the sub-array.
    if (start >= end)
        return 0;
  
    // Iterate from the start
    // to end-1.
    for (int k = start; k < end; ++k) {
  
        if ((prefix_sum[k] - prefix_sum[start - 1])
            == (prefix_sum[end] - prefix_sum[k])) {
  
            // Recursive call to the left
            // and the right sub-array.
            return 1 + splitArray(start,
                                  k,
                                  arr,
                                  prefix_sum)
                   + splitArray(k + 1,
                                end,
                                arr,
                                prefix_sum);
        }
    }
  
    // If there is no such partition,
    // then return 0
    return 0;
}
  
// Function to find the total splitting
void solve(int arr[], int n)
{
  
    // Prefix array to store
    // the prefix-sum using
    // 1 based indexing
    int prefix_sum[n + 1];
  
    prefix_sum[0] = 0;
  
    // Store the prefix-sum
    for (int i = 1; i <= n; ++i) {
        prefix_sum[i] = prefix_sum[i - 1]
                        + arr[i - 1];
    }
  
    // Function Call to count the
    // number of splitting
    cout << splitArray(1, n,
                       arr,
                       prefix_sum);
}
  
// Driver Code
int main()
{
    // Given array
    int arr[] = { 12, 3, 3, 0, 3, 3 };
    int N = sizeof(arr) / sizeof(arr[0]);
  
    // Function call
    solve(arr, N);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
class GFG{
  
// Recursion Function to calculate the
// possible splitting
static int splitArray(int start, int end,
                      int[] arr,
                      int[] prefix_sum)
{
    // If there are less than
    // two elements, we cannot
    // partition the sub-array.
    if (start >= end)
        return 0;
  
    // Iterate from the start
    // to end-1.
    for (int k = start; k < end; ++k) 
    {
        if ((prefix_sum[k] - prefix_sum[start - 1]) == 
            (prefix_sum[end] - prefix_sum[k])) 
        {
  
            // Recursive call to the left
            // and the right sub-array.
            return 1 + splitArray(start, k, arr, prefix_sum) + 
                       splitArray(k + 1, end, arr, prefix_sum);
        }
    }
  
    // If there is no such partition,
    // then return 0
    return 0;
}
  
// Function to find the total splitting
static void solve(int arr[], int n)
{
  
    // Prefix array to store
    // the prefix-sum using
    // 1 based indexing
    int []prefix_sum = new int[n + 1];
  
    prefix_sum[0] = 0;
  
    // Store the prefix-sum
    for (int i = 1; i <= n; ++i)
    {
        prefix_sum[i] = prefix_sum[i - 1] + 
                               arr[i - 1];
    }
  
    // Function Call to count the
    // number of splitting
    System.out.print(splitArray(1, n, arr,
                                prefix_sum));
}
  
// Driver Code
public static void main(String[] args)
{
    // Given array
    int arr[] = { 12, 3, 3, 0, 3, 3 };
    int N = arr.length;
  
    // Function call
    solve(arr, N);
}
}
  
// This code is contributed by Amit Katiyar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
  
class GFG{
  
// Recursion Function to calculate the
// possible splitting
static int splitArray(int start, int end,
                      int[] arr,
                      int[] prefix_sum)
{
      
    // If there are less than
    // two elements, we cannot
    // partition the sub-array.
    if (start >= end)
        return 0;
  
    // Iterate from the start
    // to end-1.
    for(int k = start; k < end; ++k) 
    {
       if ((prefix_sum[k] - 
            prefix_sum[start - 1]) == 
           (prefix_sum[end] - 
            prefix_sum[k])) 
       {
             
           // Recursive call to the left
           // and the right sub-array.
           return 1 + splitArray(start, k, arr, 
                                 prefix_sum) + 
                      splitArray(k + 1, end, arr,
                                 prefix_sum);
       }
    }
      
    // If there is no such partition,
    // then return 0
    return 0;
}
  
// Function to find the total splitting
static void solve(int []arr, int n)
{
      
    // Prefix array to store
    // the prefix-sum using
    // 1 based indexing
    int []prefix_sum = new int[n + 1];
  
    prefix_sum[0] = 0;
  
    // Store the prefix-sum
    for(int i = 1; i <= n; ++i)
    {
       prefix_sum[i] = prefix_sum[i - 1] + 
                              arr[i - 1];
    }
  
    // Function Call to count the
    // number of splitting
    Console.Write(splitArray(1, n, arr,
                             prefix_sum));
}
  
// Driver Code
public static void Main(String[] args)
{
      
    // Given array
    int []arr = { 12, 3, 3, 0, 3, 3 };
    int N = arr.Length;
  
    // Function call
    solve(arr, N);
}
}
  
// This code is contributed by Amit Katiyar

chevron_right


Output:

4

Time Complexity: O(N2)
Auxiliary Space: O(N)

competitive-programming-img




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : amit143katiyar