Skip to content
Related Articles

Related Articles

Save Article
Improve Article
Save Article
Like Article

Number of subsequences with zero sum

  • Last Updated : 11 May, 2021

Given an array arr[] of N integers. The task is to count the number of sub-sequences whose sum is 0
Examples: 
 

Input: arr[] = {-1, 2, -2, 1} 
Output:
All possible sub-sequences are {-1, 1}, {2, -2} and {-1, 2, -2, 1} 
Input: arr[] = {-2, -4, -1, 6, -2} 
Output:
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

 

Approach: The problem can be solved using recursion. Recursively, we start from the first index, and either select the number to be added in the subsequence or we do not select the number at an index. Once the index exceeds N, we need to check if the sum evaluated is 0 or not and the count of numbers taken in subsequence should be a minimum of one. If it is, then we simply return 1 which is added to the number of ways. 
Dynamic Programming cannot be used to solve this problem because of the sum value which can be anything that is not possible to store in any dimensional array. 
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count
// of the required sub-sequences
int countSubSeq(int i, int sum, int cnt,
                int a[], int n)
{
 
    // Base case
    if (i == n) {
 
        // Check if the sum is 0
        // and at least a single element
        // is in the sub-sequence
        if (sum == 0 && cnt > 0)
            return 1;
        else
            return 0;
    }
    int ans = 0;
 
    // Do not take the number in
    // the current sub-sequence
    ans += countSubSeq(i + 1, sum, cnt, a, n);
 
    // Take the number in the
    // current sub-sequence
    ans += countSubSeq(i + 1, sum + a[i],
                       cnt + 1, a, n);
 
    return ans;
}
 
// Driver code
int main()
{
    int a[] = { -1, 2, -2, 1 };
    int n = sizeof(a) / sizeof(a[0]);
    cout << countSubSeq(0, 0, 0, a, n);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
 
    // Function to return the count
    // of the required sub-sequences
    static int countSubSeq(int i, int sum, int cnt,
                                    int a[], int n)
    {
 
        // Base case
        if (i == n)
        {
 
            // Check if the sum is 0
            // and at least a single element
            // is in the sub-sequence
            if (sum == 0 && cnt > 0)
            {
                return 1;
            }
            else
            {
                return 0;
            }
        }
        int ans = 0;
 
        // Do not take the number in
        // the current sub-sequence
        ans += countSubSeq(i + 1, sum, cnt, a, n);
 
        // Take the number in the
        // current sub-sequence
        ans += countSubSeq(i + 1, sum + a[i],
                                cnt + 1, a, n);
 
        return ans;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int a[] = {-1, 2, -2, 1};
        int n = a.length;
        System.out.println(countSubSeq(0, 0, 0, a, n));
    }
}
 
// This code has been contributed by 29AjayKumar

Python3




# Python3 implementation of the approach
 
# Function to return the count
# of the required sub-sequences
def countSubSeq(i, Sum, cnt, a, n):
 
    # Base case
    if (i == n):
 
        # Check if the Sum is 0
        # and at least a single element
        # is in the sub-sequence
        if (Sum == 0 and cnt > 0):
            return 1
        else:
            return 0
    ans = 0
 
    # Do not take the number in
    # the current sub-sequence
    ans += countSubSeq(i + 1, Sum, cnt, a, n)
 
    # Take the number in the
    # current sub-sequence
    ans += countSubSeq(i + 1, Sum + a[i],
                           cnt + 1, a, n)
 
    return ans
 
# Driver code
a = [-1, 2, -2, 1]
n = len(a)
print(countSubSeq(0, 0, 0, a, n))
 
# This code is contributed by mohit kumar

C#




// C# implementation of the approach
using System;
 
class GFG
{
 
    // Function to return the count
    // of the required sub-sequences
    static int countSubSeq(int i, int sum,
                           int cnt, int []a, int n)
    {
 
        // Base case
        if (i == n)
        {
 
            // Check if the sum is 0
            // and at least a single element
            // is in the sub-sequence
            if (sum == 0 && cnt > 0)
            {
                return 1;
            }
            else
            {
                return 0;
            }
        }
         
        int ans = 0;
 
        // Do not take the number in
        // the current sub-sequence
        ans += countSubSeq(i + 1, sum, cnt, a, n);
 
        // Take the number in the
        // current sub-sequence
        ans += countSubSeq(i + 1, sum + a[i],
                                  cnt + 1, a, n);
 
        return ans;
    }
 
    // Driver code
    public static void Main()
    {
        int []a = {-1, 2, -2, 1};
        int n = a.Length;
        Console.Write(countSubSeq(0, 0, 0, a, n));
    }
}
 
// This code is contributed by Akanksha Rai

PHP




<?php
// PHP implementation of the approach
 
// Function to return the count
// of the required sub-sequences
function countSubSeq($i, $sum, $cnt, $a, $n)
{
 
    // Base case
    if ($i == $n)
    {
 
        // Check if the sum is 0
        // and at least a single element
        // is in the sub-sequence
        if ($sum == 0 && $cnt > 0)
            return 1;
        else
            return 0;
    }
    $ans = 0;
 
    // Do not take the number in
    // the current sub-sequence
    $ans += countSubSeq($i + 1, $sum,
                        $cnt, $a, $n);
 
    // Take the number in the
    // current sub-sequence
    $ans += countSubSeq($i + 1, $sum + $a[$i],
                        $cnt + 1, $a, $n);
 
    return $ans;
}
 
// Driver code
$a = array( -1, 2, -2, 1 );
$n = count($a) ;
 
echo countSubSeq(0, 0, 0, $a, $n);
 
// This code is contributed by Ryuga
?>

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the count
// of the required sub-sequences
function countSubSeq(i, sum, cnt, a, n)
{
 
    // Base case
    if (i == n) {
 
        // Check if the sum is 0
        // and at least a single element
        // is in the sub-sequence
        if (sum == 0 && cnt > 0)
            return 1;
        else
            return 0;
    }
    let ans = 0;
 
    // Do not take the number in
    // the current sub-sequence
    ans += countSubSeq(i + 1, sum, cnt, a, n);
 
    // Take the number in the
    // current sub-sequence
    ans += countSubSeq(i + 1, sum + a[i],
                       cnt + 1, a, n);
 
    return ans;
}
 
// Driver code
    let a = [ -1, 2, -2, 1 ];
    let n = a.length;
    document.write(countSubSeq(0, 0, 0, a, n));
 
</script>
Output: 
3

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :