Skip to content
Related Articles

Related Articles

Improve Article
Number of subarrays with GCD = 1 | Segment tree
  • Difficulty Level : Medium
  • Last Updated : 03 Jun, 2021

Given an array arr[], the task is to find the count of sub-arrays with GCD equal to 1.
Examples: 
 

Input: arr[] = {1, 1, 1} 
Output:
Every single subarray of the given array has GCD 
of 1 and there are a total of 6 subarrays.
Input: arr[] = {2, 2, 2} 
Output:
 

 

Approach: This problem can be solved in O(NlogN) using segment-tree data structure. The segment that will be built can be used to answer range-gcd queries.
Let’s understand the algorithm now. Use the two-pointer technique to solve this problem. Let’s make a few observations before discussing the algorithm. 
 

  • Let’s say G is the GCD of the subarray arr[l…r] and G1 is the GCD of the subarray arr[l+1…r]. G smaller than or equal to G1 always.
  • Let’s say for the given L1, R1 is the first index such that GCD of the range [L, R] is 1 then for any L2 greater than or equal to L1, R2 will also be greater than or equal to R1.

After the above observation, two-pointer technique makes perfect sense i.e. if the length 
of the smallest R is known for an index L then for an index L + 1, the search needs to be started from R on-wards.
Below is the implementation of the above approach: 
 



C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define maxLen 30
 
// Array to store segment-tree
int seg[3 * maxLen];
 
// Function to build segment-tree to
// answer range GCD queries
int build(int l, int r, int in, int* arr)
{
    // Base-case
    if (l == r)
        return seg[in] = arr[l];
 
    // Mid element of the range
    int mid = (l + r) / 2;
 
    // Merging the result of left and right sub-tree
    return seg[in] = __gcd(build(l, mid, 2 * in + 1, arr),
                           build(mid + 1, r, 2 * in + 2, arr));
}
 
// Function to perform range GCD queries
int query(int l, int r, int l1, int r1, int in)
{
    // Base-cases
    if (l1 <= l and r <= r1)
        return seg[in];
    if (l > r1 or r < l1)
        return 0;
 
    // Mid-element
    int mid = (l + r) / 2;
 
    // Calling left and right child
    return __gcd(query(l, mid, l1, r1, 2 * in + 1),
                 query(mid + 1, r, l1, r1, 2 * in + 2));
}
 
// Function to find the required count
int findCnt(int* arr, int n)
{
    // Building the segment tree
    build(0, n - 1, 0, arr);
 
    // Two pointer variables
    int i = 0, j = 0;
 
    // To store the final answer
    int ans = 0;
 
    // Looping
    while (i < n) {
 
        // Incrementing j till we don't get
        // a gcd value of 1
        while (j < n and query(0, n - 1, i, j, 0) != 1)
            j++;
 
        // Updating the final answer
        ans += (n - j);
 
        // Increment i
        i++;
 
        // Update j
        j = max(j, i);
    }
 
    // Returning the final answer
    return ans;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 1, 1, 1 };
    int n = sizeof(arr) / sizeof(int);
 
    cout << findCnt(arr, n);
 
    return 0;
}

Java




// Java implementation of the above approach
class GFG
{
static int maxLen = 30;
 
// Array to store segment-tree
static int []seg = new int[3 * maxLen];
 
// Function to build segment-tree to
// answer range GCD queries
static int build(int l, int r,
                 int in, int[] arr)
{
    // Base-case
    if (l == r)
        return seg[in] = arr[l];
 
    // Mid element of the range
    int mid = (l + r) / 2;
 
    // Merging the result of left and right sub-tree
    return seg[in] = __gcd(build(l, mid, 2 * in + 1, arr),
                           build(mid + 1, r, 2 * in + 2, arr));
}
 
// Function to perform range GCD queries
static int query(int l, int r, int l1,
                        int r1, int in)
{
    // Base-cases
    if (l1 <= l && r <= r1)
        return seg[in];
    if (l > r1 || r < l1)
        return 0;
 
    // Mid-element
    int mid = (l + r) / 2;
 
    // Calling left and right child
    return __gcd(query(l, mid, l1, r1, 2 * in + 1),
                 query(mid + 1, r, l1, r1, 2 * in + 2));
}
 
// Function to find the required count
static int findCnt(int[] arr, int n)
{
    // Building the segment tree
    build(0, n - 1, 0, arr);
 
    // Two pointer variables
    int i = 0, j = 0;
 
    // To store the final answer
    int ans = 0;
 
    // Looping
    while (i < n)
    {
 
        // Incrementing j till we don't get
        // a gcd value of 1
        while (j < n && query(0, n - 1,
                                 i, j, 0) != 1)
            j++;
 
        // Updating the final answer
        ans += (n - j);
 
        // Increment i
        i++;
 
        // Update j
        j = Math.max(j, i);
    }
 
    // Returning the final answer
    return ans;
}
 
static int __gcd(int a, int b)
{
    return b == 0 ? a : __gcd(b, a % b);    
}
 
// Driver code
public static void main(String []args)
{
    int arr[] = { 1, 1, 1, 1 };
    int n = arr.length;
 
    System.out.println(findCnt(arr, n));
}
}
 
// This code is contributed by PrinciRaj1992

Python3




# Python3 implementation of the above approach
from math import gcd
 
maxLen = 30;
 
# Array to store segment-tree
seg = [0] * (3 * maxLen);
 
# Function to build segment-tree to
# answer range GCD queries
def build(l, r, i, arr) :
 
    # Base-case
    if (l == r) :
        seg[i] = arr[l];
        return seg[i];
 
    # Mid element of the range
    mid = (l + r) // 2;
 
    # Merging the result of left and right sub-tree
    seg[i] = gcd(build(l, mid, 2 * i + 1, arr),
                 build(mid + 1, r, 2 * i + 2, arr));
    return seg[i];
 
# Function to perform range GCD queries
def query(l, r, l1, r1, i) :
 
    # Base-cases
    if (l1 <= l and r <= r1) :
        return seg[i];
         
    if (l > r1 or r < l1) :
        return 0;
 
    # Mid-element
    mid = (l + r) // 2;
 
    # Calling left and right child
    return gcd(query(l, mid, l1, r1, 2 * i + 1),
               query(mid + 1, r, l1, r1, 2 * i + 2));
 
# Function to find the required count
def findCnt(arr, n) :
 
    # Building the segment tree
    build(0, n - 1, 0, arr);
 
    # Two pointer variables
    i = 0; j = 0;
 
    # To store the final answer
    ans = 0;
 
    # Looping
    while (i < n) :
 
        # Incrementing j till we don't get
        # a gcd value of 1
        while (j < n and
               query(0, n - 1, i, j, 0) != 1) :
            j += 1;
 
        # Updating the final answer
        ans += (n - j);
 
        # Increment i
        i += 1;
 
        # Update j
        j = max(j, i);
 
    # Returning the final answer
    return ans;
 
# Driver code
if __name__ == "__main__" :
 
    arr = [ 1, 1, 1, 1 ];
    n = len(arr);
 
    print(findCnt(arr, n));
 
# This code is contributed by AnkitRai01

C#




// C# implementation of the above approach
using System;
     
class GFG
{
static int maxLen = 30;
 
// Array to store segment-tree
static int []seg = new int[3 * maxLen];
 
// Function to build segment-tree to
// answer range GCD queries
static int build(int l, int r,
                 int iN, int[] arr)
{
    // Base-case
    if (l == r)
        return seg[iN] = arr[l];
 
    // Mid element of the range
    int mid = (l + r) / 2;
 
    // Merging the result of left and right sub-tree
    return seg[iN] = __gcd(build(l, mid, 2 * iN + 1, arr),
                           build(mid + 1, r, 2 * iN + 2, arr));
}
 
// Function to perform range GCD queries
static int query(int l, int r, int l1,
                        int r1, int iN)
{
    // Base-cases
    if (l1 <= l && r <= r1)
        return seg[iN];
    if (l > r1 || r < l1)
        return 0;
 
    // Mid-element
    int mid = (l + r) / 2;
 
    // Calling left and right child
    return __gcd(query(l, mid, l1, r1, 2 * iN + 1),
                 query(mid + 1, r, l1, r1, 2 * iN + 2));
}
 
// Function to find the required count
static int findCnt(int[] arr, int n)
{
    // Building the segment tree
    build(0, n - 1, 0, arr);
 
    // Two pointer variables
    int i = 0, j = 0;
 
    // To store the final answer
    int ans = 0;
 
    // Looping
    while (i < n)
    {
 
        // Incrementing j till we don't get
        // a gcd value of 1
        while (j < n && query(0, n - 1,
                               i, j, 0) != 1)
            j++;
 
        // Updating the final answer
        ans += (n - j);
 
        // Increment i
        i++;
 
        // Update j
        j = Math.Max(j, i);
    }
 
    // Returning the final answer
    return ans;
}
 
static int __gcd(int a, int b)
{
    return b == 0 ? a : __gcd(b, a % b);    
}
 
// Driver code
public static void Main(String []args)
{
    int []arr = { 1, 1, 1, 1 };
    int n = arr.Length;
 
    Console.WriteLine(findCnt(arr, n));
}
}
 
// This code is contributed by PrinciRaj1992

Javascript




<script>
// Javascript implementation of the above approach
 
let maxLen = 30;
 
// Array to store segment-tree
let seg = new Array(3 * maxLen);
 
// Function to build segment-tree to
// answer range GCD queries
function build(l, r, inn, arr) {
    // Base-case
    if (l == r)
        return seg[inn] = arr[l];
 
    // Mid element of the range
    let mid = Math.floor((l + r) / 2);
 
    // Merging the result of left and right sub-tree
    return seg[inn] = __gcd(build(l, mid, 2 * inn + 1, arr),
        build(mid + 1, r, 2 * inn + 2, arr));
}
 
// Function to perform range GCD queries
function query(l, r, l1, r1, inn) {
    // Base-cases
    if (l1 <= l && r <= r1)
        return seg[inn];
    if (l > r1 || r < l1)
        return 0;
 
    // Mid-element
    let mid = Math.floor((l + r) / 2);
 
    // Calling left and right child
    return __gcd(query(l, mid, l1, r1, 2 * inn + 1),
        query(mid + 1, r, l1, r1, 2 * inn + 2));
}
 
// Function to find the required count
function findCnt(arr, n) {
    // Building the segment tree
    build(0, n - 1, 0, arr);
 
    // Two poleter variables
    let i = 0, j = 0;
 
    // To store the final answer
    let ans = 0;
 
    // Looping
    while (i < n) {
 
        // Incrementing j till we don't get
        // a gcd value of 1
        while (j < n && query(0, n - 1,
            i, j, 0) != 1)
            j++;
 
        // Updating the final answer
        ans += (n - j);
 
        // Increment i
        i++;
 
        // Update j
        j = Math.max(j, i);
    }
 
    // Returning the final answer
    return ans;
}
 
function __gcd(a, b) {
    return b == 0 ? a : __gcd(b, a % b);
}
 
// Driver code
 
let arr = [1, 1, 1, 1];
let n = arr.length;
 
document.write(findCnt(arr, n));
 
// This code is contributed by gfgking
</script>
Output: 
10

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :