# Number of sub arrays with negative product

Given an array arr[] of N integers, the task is to find the count of subarrays with negative product.

Examples:

Input: arr[] = {-1, 2, -2}
Output: 4
Subarray with negative product are {-1}, {-2}, {-1, 2} and {2, -2}.

Input: arr[] = {5, -4, -3, 2, -5}
Output: 8

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach:

• Replace the positive array elements with 1 and negative array elements with -1.
• Create a prefix product array pre[] where pre[i] stores the product of all the elements from index arr to arr[i].
• Now, it can be noted that the sub-array arr[i…j] has a negative product only if pre[i] * pre[j] is negative.
• Hence, the total count of sub-arrays with negative product will be the product of the count positive and negative elements in the prefix product array.

Below is the implementation of the above approach:

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to return the count of ` `// subarrays with negative product ` `int` `negProdSubArr(``int` `arr[], ``int` `n) ` `{ ` `    ``int` `positive = 1, negative = 0; ` `    ``for` `(``int` `i = 0; i < n; i++) { ` ` `  `        ``// Replace current element with 1 ` `        ``// if it is positive else replace ` `        ``// it with -1 instead ` `        ``if` `(arr[i] > 0) ` `            ``arr[i] = 1; ` `        ``else` `            ``arr[i] = -1; ` ` `  `        ``// Take product with previous element ` `        ``// to form the prefix product ` `        ``if` `(i > 0) ` `            ``arr[i] *= arr[i - 1]; ` ` `  `        ``// Count positive and negative elements ` `        ``// in the prefix product array ` `        ``if` `(arr[i] == 1) ` `            ``positive++; ` `        ``else` `            ``negative++; ` `    ``} ` ` `  `    ``// Return the required count of subarrays ` `    ``return` `(positive * negative); ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `arr[] = { 5, -4, -3, 2, -5 }; ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr); ` ` `  `    ``cout << negProdSubArr(arr, n); ` ` `  `    ``return` `(0); ` `} `

 `// Java implementation of the approach  ` `class` `GFG ` `{ ` `     `  `    ``// Function to return the count of  ` `    ``// subarrays with negative product  ` `    ``static` `int` `negProdSubArr(``int` `arr[], ``int` `n)  ` `    ``{  ` `        ``int` `positive = ``1``, negative = ``0``;  ` `        ``for` `(``int` `i = ``0``; i < n; i++)  ` `        ``{  ` `     `  `            ``// Replace current element with 1  ` `            ``// if it is positive else replace  ` `            ``// it with -1 instead  ` `            ``if` `(arr[i] > ``0``)  ` `                ``arr[i] = ``1``;  ` `            ``else` `                ``arr[i] = -``1``;  ` `     `  `            ``// Take product with previous element  ` `            ``// to form the prefix product  ` `            ``if` `(i > ``0``)  ` `                ``arr[i] *= arr[i - ``1``];  ` `     `  `            ``// Count positive and negative elements  ` `            ``// in the prefix product array  ` `            ``if` `(arr[i] == ``1``)  ` `                ``positive++;  ` `            ``else` `                ``negative++;  ` `        ``}  ` `     `  `        ``// Return the required count of subarrays  ` `        ``return` `(positive * negative);  ` `    ``}  ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `main (String[] args)  ` `    ``{  ` `        ``int` `arr[] = { ``5``, -``4``, -``3``, ``2``, -``5` `};  ` `        ``int` `n = arr.length;  ` `     `  `        ``System.out.println(negProdSubArr(arr, n));  ` `    ``}  ` `} ` ` `  `// This code is contributed by AnkitRai01 `

 `# Python3 implementation of the approach ` ` `  `# Function to return the count of ` `# subarrays with negative product ` `def` `negProdSubArr(arr, n): ` `    ``positive ``=` `1` `    ``negative ``=` `0` `    ``for` `i ``in` `range``(n): ` ` `  `        ``# Replace current element with 1 ` `        ``# if it is positive else replace ` `        ``# it with -1 instead ` `        ``if` `(arr[i] > ``0``): ` `            ``arr[i] ``=` `1` `        ``else``: ` `            ``arr[i] ``=` `-``1` ` `  `        ``# Take product with previous element ` `        ``# to form the prefix product ` `        ``if` `(i > ``0``): ` `            ``arr[i] ``*``=` `arr[i ``-` `1``] ` ` `  `        ``# Count positive and negative elements ` `        ``# in the prefix product array ` `        ``if` `(arr[i] ``=``=` `1``): ` `            ``positive ``+``=` `1` `        ``else``: ` `            ``negative ``+``=` `1` ` `  `    ``# Return the required count of subarrays ` `    ``return` `(positive ``*` `negative) ` ` `  `# Driver code ` `arr ``=` `[``5``, ``-``4``, ``-``3``, ``2``, ``-``5``] ` `n ``=` `len``(arr) ` ` `  `print``(negProdSubArr(arr, n)) ` ` `  `# This code is contributed by Mohit Kumar `

 `// C# implementation of the approach  ` `using` `System; ` ` `  `class` `GFG ` `{ ` `         `  `    ``// Function to return the count of  ` `    ``// subarrays with negative product  ` `    ``static` `int` `negProdSubArr(``int` `[]arr, ``int` `n)  ` `    ``{  ` `        ``int` `positive = 1, negative = 0;  ` `        ``for` `(``int` `i = 0; i < n; i++)  ` `        ``{  ` `     `  `            ``// Replace current element with 1  ` `            ``// if it is positive else replace  ` `            ``// it with -1 instead  ` `            ``if` `(arr[i] > 0)  ` `                ``arr[i] = 1;  ` `            ``else` `                ``arr[i] = -1;  ` `     `  `            ``// Take product with previous element  ` `            ``// to form the prefix product  ` `            ``if` `(i > 0)  ` `                ``arr[i] *= arr[i - 1];  ` `     `  `            ``// Count positive and negative elements  ` `            ``// in the prefix product array  ` `            ``if` `(arr[i] == 1)  ` `                ``positive++;  ` `            ``else` `                ``negative++;  ` `        ``}  ` `     `  `        ``// Return the required count of subarrays  ` `        ``return` `(positive * negative);  ` `    ``}  ` `     `  `    ``// Driver code  ` `    ``static` `public` `void` `Main () ` `    ``{ ` `        ``int` `[]arr = { 5, -4, -3, 2, -5 };  ` `        ``int` `n = arr.Length;  ` `     `  `        ``Console.Write(negProdSubArr(arr, n));  ` `    ``}  ` `} ` ` `  `// This code is contributed by Sachin. `

Output:
```8
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.