Open In App
Related Articles

Number of squares of maximum area in a rectangle

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a rectangle of sides m and n. Cut the rectangle into smaller identical pieces such that each piece is a square having maximum possible side length with no leftover part of the rectangle. Print number of such squares formed.
Examples: 
 

Input: 9 6
Output: 6
Rectangle can be cut into squares of size 3.

Input: 4 2
Output: 2
Rectangle can be cut into squares of size 2.

Approach: The task is to cut the rectangle in squares with the side of length s without pieces of the rectangle left over, so s must divide both m and n. Also, the side of the square should be maximum possible, therefore, s should be the greatest common divisor of m and n. 
so, s = gcd(m, n)
To find the number of squares the rectangle is cut into, the task to be done is to divide the area of a rectangle with an area of the square of size s. 
 

C++




// C++ code for calculating the
// number of squares
#include <bits/stdc++.h>
using namespace std;
 
// Function to find number of squares
int NumberOfSquares(int x, int y)
{
    // Here in built c++ gcd function is used
    int s = __gcd(x, y);
 
    int ans = (x * y) / (s * s);
 
    return ans;
}
 
// Driver code
int main()
{
    int m = 385, n = 60;
 
    // Call the function NumberOfSquares
    cout << NumberOfSquares(m, n);
 
    return 0;
}


C




// C code for calculating the
// number of squares
#include <stdio.h>
 
int gcd(int a, int b)
{
   int gcd = 1;
   for(int i = 1; i <= a && i <= b; i++) 
    
        if (a % i ==0 && b % i == 0) 
            gcd = i;
    }
    return gcd;
}
 
// Function to find number of squares
int NumberOfSquares(int x, int y)
{
    // Here in built c++ gcd function is used
    int s = gcd(x, y);
 
    int ans = (x * y) / (s * s);
 
    return ans;
}
 
// Driver code
int main()
{
    int m = 385, n = 60;
 
    // Call the function NumberOfSquares
    printf("%d",NumberOfSquares(m, n));
 
    return 0;
}
 
// This code is contributed by kothavvsaakash.


Java




// Java code for calculating
// the number of squares
import java.io.*;
 
class GFG
{
    // Recursive function to
    // return gcd of a and b
    static int __gcd(int a, int b)
    {
        // Everything divides 0
        if (a == 0 || b == 0)
        return 0;
     
        // base case
        if (a == b)
            return a;
     
        // a is greater
        if (a > b)
            return __gcd(a - b, b);
        return __gcd(a, b - a);
    }
 
 
// Function to find
// number of squares
static int NumberOfSquares(int x,
                           int y)
{
    // Here in built c++
    // gcd function is used
    int s = __gcd(x, y);
 
    int ans = (x * y) / (s * s);
 
    return ans;
}
 
// Driver Code
public static void main (String[] args)
{
    int m = 385, n = 60;
 
    // Call the function
    // NumberOfSquares
    System.out.println(NumberOfSquares(m, n));
}
}
 
// This code is contributed by anuj_67.


Python3




# Python3 code for calculating
# the number of squares
 
# Recursive function to
# return gcd of a and b
def __gcd(a, b):
     
    # Everything divides 0
    if (a == 0 or b == 0):
        return 0;
 
    # base case
    if (a == b):
        return a;
 
    # a is greater
    if (a > b):
        return __gcd(a - b, b);
    return __gcd(a, b - a);
 
# Function to find
# number of squares
def NumberOfSquares(x, y):
     
    # Here in built PHP
    # gcd function is used
    s = __gcd(x, y);
 
    ans = (x * y) / (s * s);
 
    return int(ans);
 
# Driver Code
m = 385;
n = 60;
 
# Call the function
# NumberOfSquares
print(NumberOfSquares(m, n));
 
# This code is contributed
# by mit


C#




// C# code for calculating
// the number of squares
using System;
 
class GFG
{
     
    // Recursive function to
    // return gcd of a and b
    static int __gcd(int a, int b)
    {
        // Everything divides 0
        if (a == 0 || b == 0)
        return 0;
     
        // base case
        if (a == b)
            return a;
     
        // a is greater
        if (a > b)
            return __gcd(a - b, b);
        return __gcd(a, b - a);
    }
 
 
// Function to find
// number of squares
static int NumberOfSquares(int x,
                           int y)
{
    // Here in built c++
    // gcd function is used
    int s = __gcd(x, y);
 
    int ans = (x * y) /
              (s * s);
 
    return ans;
}
 
// Driver Code
static public void Main ()
{
int m = 385, n = 60;
 
// Call the function
// NumberOfSquares
Console.WriteLine(NumberOfSquares(m, n));
}
}
 
// This code is contributed by ajit


PHP




<?php
// PHP code for calculating
// the number of squares
 
// Recursive function to
// return gcd of a and b
function __gcd($a, $b)
{
    // Everything divides 0
    if ($a == 0 || $b == 0)
    return 0;
 
    // base case
    if ($a == $b)
        return $a;
 
    // a is greater
    if ($a > $b)
        return __gcd($a - $b, $b);
    return __gcd($a, $b - $a);
}
 
// Function to find
// number of squares
function NumberOfSquares($x, $y)
{
    // Here in built PHP
    // gcd function is used
    $s = __gcd($x, $y);
 
    $ans = ($x * $y) /
           ($s * $s);
 
    return $ans;
}
 
// Driver Code
$m = 385;
$n = 60;
 
// Call the function
// NumberOfSquares
echo (NumberOfSquares($m, $n));
 
// This code is contributed
// by akt_mit
?>


Javascript




<script>
 
// Javascript code for calculating the
// number of squares
 
function __gcd(a, b)
{
    // Everything divides 0
    if (a == 0 || b == 0)
        return 0;
 
    // base case
    if (a == b)
        return a;
 
    // a is greater
    if (a > b)
        return __gcd(a - b, b);
    return __gcd(a, b - a);
}
     
// Function to find number of squares
function NumberOfSquares(x, y)
{
    // Here in built c++ gcd function is used
    let s = __gcd(x, y);
 
    let ans = parseInt((x * y) / (s * s));
 
    return ans;
}
 
// Driver code
    let m = 385, n = 60;
 
    // Call the function NumberOfSquares
    document.write(NumberOfSquares(m, n));
 
</script>


Output: 

924

 

Time complexity: O(log(max(m,n))

Auxiliary Space: O(1)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 13 Jun, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials