Given a rectangle of sides m and n. Cut the rectangle into smaller identical pieces such that each piece is a square having maximum possible side length with no leftover part of the rectangle. Print number of such squares formed.
Examples:
Input: 9 6
Output: 6
Rectangle can be cut into squares of size 3.
Input: 4 2
Output: 2
Rectangle can be cut into squares of size 2.
Approach: The task is to cut the rectangle in squares with the side of length s without pieces of the rectangle left over, so s must divide both m and n. Also, the side of the square should be maximum possible, therefore, s should be the greatest common divisor of m and n.
so, s = gcd(m, n).
To find the number of squares the rectangle is cut into, the task to be done is to divide the area of a rectangle with an area of the square of size s.
C++
#include <bits/stdc++.h>
using namespace std;
int NumberOfSquares( int x, int y)
{
int s = __gcd(x, y);
int ans = (x * y) / (s * s);
return ans;
}
int main()
{
int m = 385, n = 60;
cout << NumberOfSquares(m, n);
return 0;
}
|
C
#include <stdio.h>
int gcd( int a, int b)
{
int gcd = 1;
for ( int i = 1; i <= a && i <= b; i++)
{
if (a % i ==0 && b % i == 0)
gcd = i;
}
return gcd;
}
int NumberOfSquares( int x, int y)
{
int s = gcd(x, y);
int ans = (x * y) / (s * s);
return ans;
}
int main()
{
int m = 385, n = 60;
printf ( "%d" ,NumberOfSquares(m, n));
return 0;
}
|
Java
import java.io.*;
class GFG
{
static int __gcd( int a, int b)
{
if (a == 0 || b == 0 )
return 0 ;
if (a == b)
return a;
if (a > b)
return __gcd(a - b, b);
return __gcd(a, b - a);
}
static int NumberOfSquares( int x,
int y)
{
int s = __gcd(x, y);
int ans = (x * y) / (s * s);
return ans;
}
public static void main (String[] args)
{
int m = 385 , n = 60 ;
System.out.println(NumberOfSquares(m, n));
}
}
|
Python3
def __gcd(a, b):
if (a = = 0 or b = = 0 ):
return 0 ;
if (a = = b):
return a;
if (a > b):
return __gcd(a - b, b);
return __gcd(a, b - a);
def NumberOfSquares(x, y):
s = __gcd(x, y);
ans = (x * y) / (s * s);
return int (ans);
m = 385 ;
n = 60 ;
print (NumberOfSquares(m, n));
|
C#
using System;
class GFG
{
static int __gcd( int a, int b)
{
if (a == 0 || b == 0)
return 0;
if (a == b)
return a;
if (a > b)
return __gcd(a - b, b);
return __gcd(a, b - a);
}
static int NumberOfSquares( int x,
int y)
{
int s = __gcd(x, y);
int ans = (x * y) /
(s * s);
return ans;
}
static public void Main ()
{
int m = 385, n = 60;
Console.WriteLine(NumberOfSquares(m, n));
}
}
|
PHP
<?php
function __gcd( $a , $b )
{
if ( $a == 0 || $b == 0)
return 0;
if ( $a == $b )
return $a ;
if ( $a > $b )
return __gcd( $a - $b , $b );
return __gcd( $a , $b - $a );
}
function NumberOfSquares( $x , $y )
{
$s = __gcd( $x , $y );
$ans = ( $x * $y ) /
( $s * $s );
return $ans ;
}
$m = 385;
$n = 60;
echo (NumberOfSquares( $m , $n ));
?>
|
Javascript
<script>
function __gcd(a, b)
{
if (a == 0 || b == 0)
return 0;
if (a == b)
return a;
if (a > b)
return __gcd(a - b, b);
return __gcd(a, b - a);
}
function NumberOfSquares(x, y)
{
let s = __gcd(x, y);
let ans = parseInt((x * y) / (s * s));
return ans;
}
let m = 385, n = 60;
document.write(NumberOfSquares(m, n));
</script>
|
Time complexity: O(log(max(m,n))
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
13 Jun, 2022
Like Article
Save Article