Related Articles

# Number of square matrices with all 1s

• Difficulty Level : Hard
• Last Updated : 26 Apr, 2021

Given an N*M matrix containing only 0s and 1s, the task is to count the number of square submatrices containing all 1s.
Examples:

Input: arr[][] = {{0, 1, 1, 1},
{1, 1, 1, 1},
{0, 1, 1, 1}}
Output: 15
Explanation:
There are 10 squares of side length 1.
There are 4 squares of side length 2.
There is 1 square of side length 3.
Total number of squares = 10 + 4 + 1 = 15.
Input: arr[][] = {{1, 0, 1},
{1, 1, 0},
{1, 1, 0}}
Output:

Approach: This problem can be solved using Dynamic Programming.

1. Let the array arr[i][j] store the number of square matrices ending at (i, j)
2. The recurrence relation to find the number of squares ending at (i, j) can be given by:
• If arr[i][j] is 1:
• arr[i][j] = min( min(arr[i-1][j], arr[i][j-1]), arr[i-1][j-1]) + 1
• Else if arr[i][j] is 0:
• arr[i][j] = 0
3. Calculate the sum of the array which is equal to the number of square submatrices with all 1s.

Below is the implementation of the above approach:

## CPP

 `// C++ program to return the number of``// square submatrices with all 1s``#include ``using` `namespace` `std;` `#define n 3``#define m 3` `// Function to return the number of``// square submatrices with all 1s``int` `countSquareMatrices(``int` `a[][m],``                        ``int` `N, ``int` `M)``{``    ``// Initialize count variable``    ``int` `count = 0;` `    ``for` `(``int` `i = 1; i < N; i++) {``        ``for` `(``int` `j = 1; j < M; j++) {``            ``// If a[i][j] is equal to 0``            ``if` `(a[i][j] == 0)``                ``continue``;` `            ``// Calculate number of``            ``// square submatrices``            ``// ending at (i, j)``            ``a[i][j] = min(min(a[i - 1][j],``                              ``a[i][j - 1]),``                          ``a[i - 1][j - 1])``                      ``+ 1;``        ``}``    ``}` `    ``// Calculate the sum of the array``    ``for` `(``int` `i = 0; i < N; i++)``        ``for` `(``int` `j = 0; j < M; j++)``            ``count += a[i][j];` `    ``return` `count;``}` `// Driver code``int` `main()``{``    ``int` `arr[][m] = { { 1, 0, 1 },``                     ``{ 1, 1, 0 },``                     ``{ 1, 1, 0 } };` `    ``cout << countSquareMatrices(arr, n, m);` `    ``return` `0;``}`

## Java

 `// Java program to return the number of``// square submatrices with all 1s``class` `GFG``{``    ` `    ``final` `static` `int` `n = ``3``;``    ``final` `static` `int` `m = ``3``;``    ` `    ``// Function to return the number of``    ``// square submatrices with all 1s``    ``static` `int` `countSquareMatrices(``int` `a[][], ``int` `N, ``int` `M)``    ``{``        ``// Initialize count variable``        ``int` `count = ``0``;``    ` `        ``for` `(``int` `i = ``1``; i < N; i++)``        ``{``            ``for` `(``int` `j = ``1``; j < M; j++)``            ``{``                ``// If a[i][j] is equal to 0``                ``if` `(a[i][j] == ``0``)``                    ``continue``;``    ` `                ``// Calculate number of``                ``// square submatrices``                ``// ending at (i, j)``                ``a[i][j] = Math.min(Math.min(a[i - ``1``][j], a[i][j - ``1``]),``                            ``a[i - ``1``][j - ``1``]) + ``1``;``            ``}``        ``}``    ` `        ``// Calculate the sum of the array``        ``for` `(``int` `i = ``0``; i < N; i++)``            ``for` `(``int` `j = ``0``; j < M; j++)``                ``count += a[i][j];``    ` `        ``return` `count;``    ``}``    ` `    ``// Driver code``    ``public` `static` `void` `main (String[] args)``    ``{``        ``int` `arr[][] = { { ``1``, ``0``, ``1` `},``                        ``{ ``1``, ``1``, ``0` `},``                        ``{ ``1``, ``1``, ``0` `} };``    ` `        ``System.out.println(countSquareMatrices(arr, n, m));``    ``}``}` `// This code is contributed by AnkitRai01`

## Python

 `# Python3 program to return the number of``# square submatrices with all 1s``n ``=` `3``m ``=` `3` `# Function to return the number of``# square submatrices with all 1s``def` `countSquareMatrices(a, N, M):``    ` `    ``# Initialize count variable``    ``count ``=` `0` `    ``for` `i ``in` `range``(``1``, N):``        ``for` `j ``in` `range``(``1``, M):``            ` `            ``# If a[i][j] is equal to 0``            ``if` `(a[i][j] ``=``=` `0``):``                ``continue` `            ``# Calculate number of``            ``# square submatrices``            ``# ending at (i, j)``            ``a[i][j] ``=` `min``([a[i ``-` `1``][j],``                      ``a[i][j ``-` `1``], a[i ``-` `1``][j ``-` `1``]])``+``1` `    ``# Calculate the sum of the array``    ``for` `i ``in` `range``(N):``        ``for` `j ``in` `range``(M):``            ``count ``+``=` `a[i][j]` `    ``return` `count` `# Driver code` `arr ``=` `[ [ ``1``, ``0``, ``1``],``    ``[ ``1``, ``1``, ``0` `],``    ``[ ``1``, ``1``, ``0` `] ]` `print``(countSquareMatrices(arr, n, m))` `# This code is contributed by mohit kumar 29`

## C#

 `// C# program to return the number of``// square submatrices with all 1s``using` `System;` `class` `GFG``{``    ` `    ``static` `int` `n = 3;``    ``static` `int` `m = 3;``    ` `    ``// Function to return the number of``    ``// square submatrices with all 1s``    ``static` `int` `countSquareMatrices(``int` `[,]a, ``int` `N, ``int` `M)``    ``{``        ``// Initialize count variable``        ``int` `count = 0;``    ` `        ``for` `(``int` `i = 1; i < N; i++)``        ``{``            ``for` `(``int` `j = 1; j < M; j++)``            ``{``                ``// If a[i][j] is equal to 0``                ``if` `(a[i, j] == 0)``                    ``continue``;``    ` `                ``// Calculate number of``                ``// square submatrices``                ``// ending at (i, j)``                ``a[i, j] = Math.Min(Math.Min(a[i - 1, j], a[i, j - 1]),``                            ``a[i - 1, j - 1]) + 1;``            ``}``        ``}``    ` `        ``// Calculate the sum of the array``        ``for` `(``int` `i = 0; i < N; i++)``            ``for` `(``int` `j = 0; j < M; j++)``                ``count += a[i, j];``    ` `        ``return` `count;``    ``}``    ` `    ``// Driver code``    ``public` `static` `void` `Main()``    ``{``        ``int` `[,]arr = { { 1, 0, 1 },``                        ``{ 1, 1, 0 },``                        ``{ 1, 1, 0 } };``    ` `        ``Console.WriteLine(countSquareMatrices(arr, n, m));``    ``}``}` `// This code is contributed by AnkitRai01`

## Javascript

 ``

Output :

`7`

Time Complexity: O(N*M)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up