Skip to content
Related Articles

Related Articles

Improve Article

Number of square matrices with all 1s

  • Difficulty Level : Hard
  • Last Updated : 26 Apr, 2021

Given an N*M matrix containing only 0s and 1s, the task is to count the number of square submatrices containing all 1s.
Examples: 

Input: arr[][] = {{0, 1, 1, 1}, 
{1, 1, 1, 1}, 
{0, 1, 1, 1}} 
Output: 15 
Explanation: 
There are 10 squares of side length 1. 
There are 4 squares of side length 2. 
There is 1 square of side length 3. 
Total number of squares = 10 + 4 + 1 = 15.
Input: arr[][] = {{1, 0, 1}, 
{1, 1, 0}, 
{1, 1, 0}} 
Output:

Approach: This problem can be solved using Dynamic Programming.  

  1. Let the array arr[i][j] store the number of square matrices ending at (i, j)
  2. The recurrence relation to find the number of squares ending at (i, j) can be given by:
    • If arr[i][j] is 1:
      • arr[i][j] = min( min(arr[i-1][j], arr[i][j-1]), arr[i-1][j-1]) + 1
    • Else if arr[i][j] is 0: 
      • arr[i][j] = 0
  3. Calculate the sum of the array which is equal to the number of square submatrices with all 1s.

Below is the implementation of the above approach:  

CPP




// C++ program to return the number of
// square submatrices with all 1s
#include <bits/stdc++.h>
using namespace std;
 
#define n 3
#define m 3
 
// Function to return the number of
// square submatrices with all 1s
int countSquareMatrices(int a[][m],
                        int N, int M)
{
    // Initialize count variable
    int count = 0;
 
    for (int i = 1; i < N; i++) {
        for (int j = 1; j < M; j++) {
            // If a[i][j] is equal to 0
            if (a[i][j] == 0)
                continue;
 
            // Calculate number of
            // square submatrices
            // ending at (i, j)
            a[i][j] = min(min(a[i - 1][j],
                              a[i][j - 1]),
                          a[i - 1][j - 1])
                      + 1;
        }
    }
 
    // Calculate the sum of the array
    for (int i = 0; i < N; i++)
        for (int j = 0; j < M; j++)
            count += a[i][j];
 
    return count;
}
 
// Driver code
int main()
{
    int arr[][m] = { { 1, 0, 1 },
                     { 1, 1, 0 },
                     { 1, 1, 0 } };
 
    cout << countSquareMatrices(arr, n, m);
 
    return 0;
}

Java




// Java program to return the number of
// square submatrices with all 1s
class GFG
{
     
    final static int n = 3;
    final static int m = 3;
     
    // Function to return the number of
    // square submatrices with all 1s
    static int countSquareMatrices(int a[][], int N, int M)
    {
        // Initialize count variable
        int count = 0;
     
        for (int i = 1; i < N; i++)
        {
            for (int j = 1; j < M; j++)
            {
                // If a[i][j] is equal to 0
                if (a[i][j] == 0)
                    continue;
     
                // Calculate number of
                // square submatrices
                // ending at (i, j)
                a[i][j] = Math.min(Math.min(a[i - 1][j], a[i][j - 1]),
                            a[i - 1][j - 1]) + 1;
            }
        }
     
        // Calculate the sum of the array
        for (int i = 0; i < N; i++)
            for (int j = 0; j < M; j++)
                count += a[i][j];
     
        return count;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int arr[][] = { { 1, 0, 1 },
                        { 1, 1, 0 },
                        { 1, 1, 0 } };
     
        System.out.println(countSquareMatrices(arr, n, m));
    }
}
 
// This code is contributed by AnkitRai01

Python




# Python3 program to return the number of
# square submatrices with all 1s
n = 3
m = 3
 
# Function to return the number of
# square submatrices with all 1s
def countSquareMatrices(a, N, M):
     
    # Initialize count variable
    count = 0
 
    for i in range(1, N):
        for j in range(1, M):
             
            # If a[i][j] is equal to 0
            if (a[i][j] == 0):
                continue
 
            # Calculate number of
            # square submatrices
            # ending at (i, j)
            a[i][j] = min([a[i - 1][j],
                      a[i][j - 1], a[i - 1][j - 1]])+1
 
    # Calculate the sum of the array
    for i in range(N):
        for j in range(M):
            count += a[i][j]
 
    return count
 
# Driver code
 
arr = [ [ 1, 0, 1],
    [ 1, 1, 0 ],
    [ 1, 1, 0 ] ]
 
print(countSquareMatrices(arr, n, m))
 
# This code is contributed by mohit kumar 29

C#




// C# program to return the number of
// square submatrices with all 1s
using System;
 
class GFG
{
     
    static int n = 3;
    static int m = 3;
     
    // Function to return the number of
    // square submatrices with all 1s
    static int countSquareMatrices(int [,]a, int N, int M)
    {
        // Initialize count variable
        int count = 0;
     
        for (int i = 1; i < N; i++)
        {
            for (int j = 1; j < M; j++)
            {
                // If a[i][j] is equal to 0
                if (a[i, j] == 0)
                    continue;
     
                // Calculate number of
                // square submatrices
                // ending at (i, j)
                a[i, j] = Math.Min(Math.Min(a[i - 1, j], a[i, j - 1]),
                            a[i - 1, j - 1]) + 1;
            }
        }
     
        // Calculate the sum of the array
        for (int i = 0; i < N; i++)
            for (int j = 0; j < M; j++)
                count += a[i, j];
     
        return count;
    }
     
    // Driver code
    public static void Main()
    {
        int [,]arr = { { 1, 0, 1 },
                        { 1, 1, 0 },
                        { 1, 1, 0 } };
     
        Console.WriteLine(countSquareMatrices(arr, n, m));
    }
}
 
// This code is contributed by AnkitRai01

Javascript




<script>
 
// Javascript program to return the number of
// square submatrices with all 1s
 
var n = 3
var m = 3
 
// Function to return the number of
// square submatrices with all 1s
function countSquareMatrices(a, N, M)
{
    // Initialize count variable
    var count = 0;
 
    for (var i = 1; i < N; i++) {
        for (var j = 1; j < M; j++) {
            // If a[i][j] is equal to 0
            if (a[i][j] == 0)
                continue;
 
            // Calculate number of
            // square submatrices
            // ending at (i, j)
            a[i][j] = Math.min(Math.min(a[i - 1][j],
                              a[i][j - 1]),
                          a[i - 1][j - 1])
                      + 1;
        }
    }
 
    // Calculate the sum of the array
    for (var i = 0; i < N; i++)
        for (var j = 0; j < M; j++)
            count += a[i][j];
 
    return count;
}
 
// Driver code
var arr = [ [ 1, 0, 1 ],
                 [ 1, 1, 0 ],
                 [ 1, 1, 0 ] ];
document.write( countSquareMatrices(arr, n, m));
 
</script>

Output : 



7

Time Complexity: O(N*M)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :