Number of square matrices with all 1s

Given an N*M matrix containing only 0s and 1s, the task is to count the number of square submatrices containing all 1s.

Examples:

Input: arr[][] = {{0, 1, 1, 1},
{1, 1, 1, 1},
{0, 1, 1, 1}}
Output: 15
Explanation:
There are 10 squares of side length 1.
There are 4 squares of side length 2.
There is 1 square of side length 3.
Total number of squares = 10 + 4 + 1 = 15.

Input: arr[][] = {{1, 0, 1},
{1, 1, 0},
{1, 1, 0}}
Output: 7

Approach: This problem can be solved using Dynamic Programming.



  1. Let the array arr[i][j] store the number of square matrices ending at (i, j)
  2. The recurrence relation to find the number of squares ending at (i, j) can be given by:
    • If arr[i][j] is 1:
      • arr[i][j] = min( min(arr[i-1][j], arr[i][j-1]), arr[i-1][j-1]) + 1
    • Else if arr[i][j] is 0:
      • arr[i][j] = 0
  3. Calculate the sum of the array which is equal to the number of square submatrices with all 1s.

Below is the implementation of the above approach:

CPP

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to return the number of
// square submatrices with all 1s
#include <bits/stdc++.h>
using namespace std;
  
#define n 3
#define m 3
  
// Function to return the number of
// square submatrices with all 1s
int countSquareMatrices(int a[][m],
                        int N, int M)
{
    // Initialize count variable
    int count = 0;
  
    for (int i = 1; i < N; i++) {
        for (int j = 1; j < M; j++) {
            // If a[i][j] is equal to 0
            if (a[i][j] == 0)
                continue;
  
            // Calculate number of
            // square submatrices
            // ending at (i, j)
            a[i][j] = min(min(a[i - 1][j],
                              a[i][j - 1]),
                          a[i - 1][j - 1])
                      + 1;
        }
    }
  
    // Calculate the sum of the array
    for (int i = 0; i < N; i++)
        for (int j = 0; j < M; j++)
            count += a[i][j];
  
    return count;
}
  
// Driver code
int main()
{
    int arr[][m] = { { 1, 0, 1 },
                     { 1, 1, 0 },
                     { 1, 1, 0 } };
  
    cout << countSquareMatrices(arr, n, m);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to return the number of 
// square submatrices with all 1s
class GFG 
{
      
    final static int n = 3
    final static int m = 3
      
    // Function to return the number of 
    // square submatrices with all 1s 
    static int countSquareMatrices(int a[][], int N, int M) 
    
        // Initialize count variable 
        int count = 0
      
        for (int i = 1; i < N; i++)
        
            for (int j = 1; j < M; j++) 
            
                // If a[i][j] is equal to 0 
                if (a[i][j] == 0
                    continue
      
                // Calculate number of 
                // square submatrices 
                // ending at (i, j) 
                a[i][j] = Math.min(Math.min(a[i - 1][j], a[i][j - 1]), 
                            a[i - 1][j - 1]) + 1
            
        
      
        // Calculate the sum of the array 
        for (int i = 0; i < N; i++) 
            for (int j = 0; j < M; j++) 
                count += a[i][j]; 
      
        return count; 
    
      
    // Driver code 
    public static void main (String[] args)
    
        int arr[][] = { { 1, 0, 1 }, 
                        { 1, 1, 0 }, 
                        { 1, 1, 0 } }; 
      
        System.out.println(countSquareMatrices(arr, n, m)); 
    
}
  
// This code is contributed by AnkitRai01

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to return the number of
# square submatrices with all 1s
n = 3
m = 3
  
# Function to return the number of
# square submatrices with all 1s
def countSquareMatrices(a, N, M):
      
    # Initialize count variable
    count = 0
  
    for i in range(1, N):
        for j in range(1, M):
              
            # If a[i][j] is equal to 0
            if (a[i][j] == 0):
                continue
  
            # Calculate number of
            # square submatrices
            # ending at (i, j)
            a[i][j] = min([a[i - 1][j], 
                      a[i][j - 1], a[i - 1][j - 1]])+1
  
    # Calculate the sum of the array
    for i in range(N):
        for j in range(M):
            count += a[i][j]
  
    return count
  
# Driver code
  
arr = [ [ 1, 0, 1],
    [ 1, 1, 0 ],
    [ 1, 1, 0 ] ]
  
print(countSquareMatrices(arr, n, m))
  
# This code is contributed by mohit kumar 29

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to return the number of 
// square submatrices with all 1s
using System;
  
class GFG 
{
      
    static int n = 3; 
    static int m = 3; 
      
    // Function to return the number of 
    // square submatrices with all 1s 
    static int countSquareMatrices(int [,]a, int N, int M) 
    
        // Initialize count variable 
        int count = 0; 
      
        for (int i = 1; i < N; i++)
        
            for (int j = 1; j < M; j++) 
            
                // If a[i][j] is equal to 0 
                if (a[i, j] == 0) 
                    continue
      
                // Calculate number of 
                // square submatrices 
                // ending at (i, j) 
                a[i, j] = Math.Min(Math.Min(a[i - 1, j], a[i, j - 1]), 
                            a[i - 1, j - 1]) + 1; 
            
        
      
        // Calculate the sum of the array 
        for (int i = 0; i < N; i++) 
            for (int j = 0; j < M; j++) 
                count += a[i, j]; 
      
        return count; 
    
      
    // Driver code 
    public static void Main()
    
        int [,]arr = { { 1, 0, 1 }, 
                        { 1, 1, 0 }, 
                        { 1, 1, 0 } }; 
      
        Console.WriteLine(countSquareMatrices(arr, n, m)); 
    
}
  
// This code is contributed by AnkitRai01

chevron_right



Output :

7

Time Complexity: O(N*M)

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : mohit kumar 29, AnkitRai01