Number of shortest paths to reach every cell from bottom-left cell in the grid

Given two number N and M. The task is to find the number of shortest paths to reach the cell(i, j) in the grid of size N × M when the moves started from the bottom-left corner

Note: cell(i, j) represents the ith row and jth column in the grid

Below image shows some of the shortest paths to reach cell(1, 4) in 4 × 4 grid

Examples :

Input : N = 3, M = 4 
Output : 1 3 6 10 
         1 2 3 4 
         1 1 1 1  

Input : N = 5, M = 2 
Output : 1 5 
         1 4 
         1 3 
         1 2 
         1 1 

Approach : An efficient approach is to compute the grid starting from the bottom-left corner.



Below is the implementation of the above approach :

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find number of shortest paths
#include <bits/stdc++.h>
using namespace std;
  
// Function to find number of shortest paths
void NumberOfShortestPaths(int n, int m)
{
    int a[n][m];
  
    for (int i = 0; i < n; i++)
        memset(a[i], 0, sizeof(a[i]));
  
    // Compute the grid starting from
    // the bottom-left corner
    for (int i = n - 1; i >= 0; i--) {
        for (int j = 0; j < m; j++) {
            if (j == 0 or i == n - 1)
                a[i][j] = 1;
            else
                a[i][j] = a[i][j - 1] + a[i + 1][j];
        }
    }
  
    // Print the grid
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            cout << a[i][j] << " ";
        }
        cout << endl;
    }
}
  
// Driver code
int main()
{
    int n = 5, m = 2;
  
    // Function call
    NumberOfShortestPaths(n, m);
  
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find number of shortest paths
class GFG
{
  
// Function to find number of shortest paths
static void NumberOfShortestPaths(int n, int m)
{
    int [][]a = new int[n][m];
  
    // Compute the grid starting from
    // the bottom-left corner
    for (int i = n - 1; i >= 0; i--) 
    {
        for (int j = 0; j < m; j++) 
        {
            if (j == 0 || i == n - 1)
                a[i][j] = 1;
            else
                a[i][j] = a[i][j - 1] + a[i + 1][j];
        }
    }
  
    // Print the grid
    for (int i = 0; i < n; i++) 
    {
        for (int j = 0; j < m; j++) 
        {
            System.out.print(a[i][j] + " ");
        }
        System.out.println();
    }
}
  
// Driver code
public static void main(String[] args)
{
    int n = 5, m = 2;
  
    // Function call
    NumberOfShortestPaths(n, m);
}
}
  
// This code is contributed by Princi Singh
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to find 
# number of shortest paths
  
# Function to find number of shortest paths
def NumberOfShortestPaths(n, m):
    a = [[0 for i in range(m)]
            for j in range(n)]
  
    for i in range(n):
        for j in range(m):
            a[i][j] = 0
  
    # Compute the grid starting from
    # the bottom-left corner
    i = n - 1
    while(i >= 0):
        for j in range(m):
            if (j == 0 or i == n - 1):
                a[i][j] = 1
            else:
                a[i][j] = a[i][j - 1] + \
                          a[i + 1][j]
  
        i -= 1
  
    # Print the grid
    for i in range(n):
        for j in range(m):
            print(a[i][j], end = " ")
        print("\n", end = "")
  
# Driver code
if __name__ == '__main__':
    n = 5
    m = 2
  
    # Function call
    NumberOfShortestPaths(n, m)
      
# This code is contributed by
# Surendra_Gangwar
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find number of shortest paths
using System;
  
class GFG
{
  
// Function to find number of shortest paths
static void NumberOfShortestPaths(int n, int m)
{
    int [,]a = new int[n, m];
  
    // Compute the grid starting from
    // the bottom-left corner
    for (int i = n - 1; i >= 0; i--) 
    {
        for (int j = 0; j < m; j++) 
        {
            if (j == 0 || i == n - 1)
                a[i, j] = 1;
            else
                a[i, j] = a[i, j - 1] + a[i + 1, j];
        }
    }
  
    // Print the grid
    for (int i = 0; i < n; i++) 
    {
        for (int j = 0; j < m; j++) 
        {
            Console.Write(a[i, j] + " ");
        }
        Console.Write("\n");
    }
}
  
// Driver code
public static void Main(String[] args)
{
    int n = 5, m = 2;
  
    // Function call
    NumberOfShortestPaths(n, m);
}
}
  
// This code is contributed by PrinciRaj1992
chevron_right

Output :

1 5 
1 4 
1 3 
1 2 
1 1 

Time complexity: O(N × M)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




Recommended Posts:


Student of BS computer science

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :