Given two number N and M. The task is to find the number of shortest paths to reach the cell(i, j) in the grid of size N × M when the moves started from the bottom-left corner
Note: cell(i, j) represents the ith row and jth column in the grid
Below image shows some of the shortest paths to reach cell(1, 4) in 4 × 4 grid

Examples :
Input : N = 3, M = 4
Output : 1 3 6 10
1 2 3 4
1 1 1 1
Input : N = 5, M = 2
Output : 1 5
1 4
1 3
1 2
1 1
Approach : An efficient approach is to compute the grid starting from the bottom-left corner.
- The number of shortest paths to reach cell(n, i) is 1, where, 1 < = i < = M
- The number of shortest paths to reach cell(i, 1) is 1, where, 1 < = i < = N
- The number of shortest paths to reach cell(i, j) are the sum the number of shortest paths of cell(i-1, j) and (i, j+1), where, 1 < = j < = M and 1 < = i < = N
Below is the implementation of the above approach :
C++
#include <bits/stdc++.h>
using namespace std;
void NumberOfShortestPaths( int n, int m)
{
int a[n][m];
for ( int i = 0; i < n; i++)
memset (a[i], 0, sizeof (a[i]));
for ( int i = n - 1; i >= 0; i--) {
for ( int j = 0; j < m; j++) {
if (j == 0 or i == n - 1)
a[i][j] = 1;
else
a[i][j] = a[i][j - 1] + a[i + 1][j];
}
}
for ( int i = 0; i < n; i++) {
for ( int j = 0; j < m; j++) {
cout << a[i][j] << " " ;
}
cout << endl;
}
}
int main()
{
int n = 5, m = 2;
NumberOfShortestPaths(n, m);
return 0;
}
|
Java
import java.io.*;
class GFG
{
static void NumberOfShortestPaths( int n, int m)
{
int [][]a = new int [n][m];
for ( int i = n - 1 ; i >= 0 ; i--)
{
for ( int j = 0 ; j < m; j++)
{
if (j == 0 || i == n - 1 )
a[i][j] = 1 ;
else
a[i][j] = a[i][j - 1 ] + a[i + 1 ][j];
}
}
for ( int i = 0 ; i < n; i++)
{
for ( int j = 0 ; j < m; j++)
{
System.out.print(a[i][j] + " " );
}
System.out.println();
}
}
public static void main(String[] args)
{
int n = 5 , m = 2 ;
NumberOfShortestPaths(n, m);
}
}
|
Python3
def NumberOfShortestPaths(n, m):
a = [[ 0 for i in range (m)]
for j in range (n)]
for i in range (n):
for j in range (m):
a[i][j] = 0
i = n - 1
while (i > = 0 ):
for j in range (m):
if (j = = 0 or i = = n - 1 ):
a[i][j] = 1
else :
a[i][j] = a[i][j - 1 ] + \
a[i + 1 ][j]
i - = 1
for i in range (n):
for j in range (m):
print (a[i][j], end = " " )
print ( "\n" , end = "")
if __name__ = = '__main__' :
n = 5
m = 2
NumberOfShortestPaths(n, m)
|
C#
using System;
class GFG
{
static void NumberOfShortestPaths( int n, int m)
{
int [,]a = new int [n, m];
for ( int i = n - 1; i >= 0; i--)
{
for ( int j = 0; j < m; j++)
{
if (j == 0 || i == n - 1)
a[i, j] = 1;
else
a[i, j] = a[i, j - 1] + a[i + 1, j];
}
}
for ( int i = 0; i < n; i++)
{
for ( int j = 0; j < m; j++)
{
Console.Write(a[i, j] + " " );
}
Console.Write( "\n" );
}
}
public static void Main(String[] args)
{
int n = 5, m = 2;
NumberOfShortestPaths(n, m);
}
}
|
Javascript
<script>
function NumberOfShortestPaths(n , m) {
var a = Array(n).fill().map(() => Array(m).fill(0));
for ( var i = n - 1; i >= 0; i--) {
for (j = 0; j < m; j++) {
if (j == 0 || i == n - 1)
a[i][j] = 1;
else
a[i][j] = a[i][j - 1] + a[i + 1][j];
}
}
for ( var i = 0; i < n; i++) {
for (j = 0; j < m; j++) {
document.write(a[i][j] + " " );
}
document.write( "<br/>" );
}
}
var n = 5, m = 2;
NumberOfShortestPaths(n, m);
</script>
|
Output
1 5
1 4
1 3
1 2
1 1
Time complexity: O(N × M), where N is number of rows and M is number of columns of the grid.
Auxiliary Space: O(N × M), where N is number of rows and M is number of columns of the grid.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
15 Dec, 2022
Like Article
Save Article