Number of permutation with K inversions | Set 2
Given two integers N and K, the task is to count the number of permutations of the first N natural numbers having exactly K inversions. Since the count can be very large, print it modulo 109 + 7.
An inversion is defined as a pair a[i], a[j] such that a[i] > a[j] and i < j.
Examples:
Input: N = 3, K = 2
Output: 2
Explanation:
All Permutations for N = 3 are 321, 231, 213, 312, 132, 123.
Out of which only 231 and 312 have 2 inversions as:
- 231: 2 > 1 & 3 > 1
- 312: 3 > 1 & 3 > 2.
Therefore, both are satisfying the condition of having exactly K inversions.
Input: N = 5, K = 5
Output: 22
Naive Approach: Refer to the previous post for the simplest possible approach to solve the problem.
Time Complexity: O(N*N!)
Auxiliary Space: O(1)
Dynamic Programming using Top-Down Approach: Refer to the previous post of this article for the Top-Down Approach.
Time Complexity: O(N*K2)
Auxiliary Space: O(N*K)
Dynamic Programming using Bottom-Up Approach:
Illustration:
For Example: N = 4, K = 2
N – 1 = 3, K0 = 0 … 123 => 1423
N – 1 = 3, K1 = 1 … 213, 132 => 2143, 1342
N – 1 = 3, K2 = 2 … 231, 312 => 2314, 3124
So the answer is 5.The maximum value is taken between (K – N + 1) and 0 as K inversions cannot be obtained if the number of inversions in permutation of (N – 1) numbers is less than K – (N – 1) as at most (N – 1) new inversions can be obtained by adding Nth number at the beginning.
Follow the steps below to solve the problem:
- Create an auxiliary array dp[2][K + 1] where dp[N][K] stores all permutations of (N – 1) numbers with K = (max(K – (N – 1), 0) to K) inversions, by adding Nth number with them only once.
- Using dp[i % 2][K] will interchange iteration between two rows and take j = Max(K – (N – 1), 0). So dp[N[K] = dp[N-1][j] + dp[N-1][j+1] + …. + dp[N – 1][K].
- For calculating dp[N][K] there is no need to do this extra K iteration as it can be obtained in O(1) from dp[N][K – 1]. So the recurrence relation is given by:
- dp[N][K] = dp[N][K – 1] + dp[N – 1][K] – dp[N – 1][max(K – (N – 1), 0) – 1]
- Iterate two nested loops using the variable i and j over N and K respectively and update each dp states as per the above recurrence relation.
- Print the value of dp[N%2][K] after the above steps as the result.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to count permutations with // K inversions int numberOfPermWithKInversion( int N, int K) { // Store number of permutations // with K inversions int dp[2][K + 1]; int mod = 1000000007; for ( int i = 1; i <= N; i++) { for ( int j = 0; j <= K; j++) { // If N = 1 only 1 permutation // with no inversion if (i == 1) dp[i % 2][j] = (j == 0); // For K = 0 only 1 permutation // with no inversion else if (j == 0) dp[i % 2][j] = 1; // Otherwise Update each dp // state as per the reccurrance // relation formed else dp[i % 2][j] = (dp[i % 2][j - 1] % mod + (dp[1 - i % 2][j] - ((max(j - (i - 1), 0) == 0) ? 0 : dp[1 - i % 2] [max(j - (i - 1), 0) - 1]) + mod) % mod) % mod; ; } } // Print final count cout << dp[N % 2][K]; } // Driver Code int main() { // Given N and K int N = 3, K = 2; // Function Call numberOfPermWithKInversion(N, K); return 0; } |
Java
// Java program for the above approach import java.io.*; class GFG{ // Function to count permutations with // K inversions static void numberOfPermWithKInversion( int N, int K) { // Store number of permutations // with K inversions int [][] dp = new int [ 2 ][K + 1 ]; int mod = 1000000007 ; for ( int i = 1 ; i <= N; i++) { for ( int j = 0 ; j <= K; j++) { // If N = 1 only 1 permutation // with no inversion if (i == 1 ) { dp[i % 2 ][j] = (j == 0 ) ? 1 : 0 ; } // For K = 0 only 1 permutation // with no inversion else if (j == 0 ) dp[i % 2 ][j] = 1 ; // Otherwise Update each dp // state as per the reccurrance // relation formed else { int maxm = Math.max(j - (i - 1 )); dp[i % 2 ][j] = (dp[i % 2 ][j - 1 ] % mod + (dp[ 1 - i % 2 ][j] - ((Math.max(j - (i - 1 ), 0 ) == 0 ) ? 0 : dp[ 1 - i % 2 ][maxm, 0 ) - 1 ]) + mod) % mod) % mod; } } } // Print final count System.out.println (dp[N % 2 ][K]); } // Driver Code public static void main(String[] args) { // Given N and K int N = 3 , K = 2 ; // Function Call numberOfPermWithKInversion(N, K); } } // This code is contributed by akhilsaini |
Python3
# Python3 program for the above approach # Function to count permutations with # K inversions def numberOfPermWithKInversion(N, K): # Store number of permutations # with K inversions dp = [[ 0 ] * (K + 1 )] * 2 mod = 1000000007 for i in range ( 1 , N + 1 ): for j in range ( 0 , K + 1 ): # If N = 1 only 1 permutation # with no inversion if (i = = 1 ): dp[i % 2 ][j] = 1 if (j = = 0 ) else 0 # For K = 0 only 1 permutation # with no inversion elif (j = = 0 ): dp[i % 2 ][j] = 1 # Otherwise Update each dp # state as per the reccurrance # relation formed else : var = ( 0 if ( max (j - (i - 1 ), 0 ) = = 0 ) else dp[ 1 - i % 2 ][ max (j - (i - 1 ), 0 ) - 1 ]) dp[i % 2 ][j] = ((dp[i % 2 ][j - 1 ] % mod + (dp[ 1 - i % 2 ][j] - (var) + mod) % mod) % mod) # Print final count print (dp[N % 2 ][K]) # Driver Code if __name__ = = '__main__' : # Given N and K N = 3 K = 2 # Function Call numberOfPermWithKInversion(N, K) # This code is contributed by akhilsaini |
C#
// C# program for the above approach using System; class GFG{ // Function to count permutations with // K inversions static void numberOfPermWithKInversion( int N, int K) { // Store number of permutations // with K inversions int [,] dp = new int [2, K + 1]; int mod = 1000000007; for ( int i = 1; i <= N; i++) { for ( int j = 0; j <= K; j++) { // If N = 1 only 1 permutation // with no inversion if (i == 1) { dp[i % 2, j] = (j == 0) ? 1 : 0; } // For K = 0 only 1 permutation // with no inversion else if (j == 0) dp[i % 2, j] = 1; // Otherwise Update each dp // state as per the reccurrance // relation formed else dp[i % 2, j] = (dp[i % 2, j - 1] % mod + (dp[1 - i % 2, j] - ((Math.Max(j - (i - 1), 0) == 0) ? 0 : dp[1 - i % 2, Math.Max( j - (i - 1), 0) - 1]) + mod) % mod) % mod; } } // Print final count Console.WriteLine(dp[N % 2, K]); } // Driver Code public static void Main() { // Given N and K int N = 3, K = 2; // Function Call numberOfPermWithKInversion(N, K); } } // This code is contributed by akhilsaini |
Javascript
<script> // Javascript program to implement // the above approach // Function to count permutations with // K inversions function numberOfPermWithKInversion(N, K) { // Store number of permutations // with K inversions let dp = new Array(2); // Loop to create 2D array using 1D array for ( var i = 0; i < dp.length; i++) { dp[i] = new Array(2); } let mod = 1000000007; for (let i = 1; i <= N; i++) { for (let j = 0; j <= K; j++) { // If N = 1 only 1 permutation // with no inversion if (i == 1) { dp[i % 2][j] = (j == 0) ? 1 : 0; } // For K = 0 only 1 permutation // with no inversion else if (j == 0) dp[i % 2][j] = 1; // Otherwise Update each dp // state as per the reccurrance // relation formed else dp[i % 2][j] = (dp[i % 2][j - 1] % mod + (dp[1 - i % 2][j] - ((Math.max(j - (i - 1), 0) == 0) ? 0 : dp[1 - i % 2][Math.max(j - (i - 1), 0) - 1]) + mod) % mod) % mod; } } // Print final count document.write(dp[N % 2][K]); } // Driver Code // Given N and K let N = 3, K = 2; // Function Call numberOfPermWithKInversion(N, K); </script> |
2
Time Complexity: O(N * K)
Auxiliary Space: O(K)
Please Login to comment...