Number of palindromic permutations | Set 1
Given string str, find count of all palindromic permutations of it.
Examples :
Input : str = "gfgf" Output : 2 There are two palindromic permutations fggf and gffg Input : str = "abc" Output : 0
The idea is based on below facts :
- A string can permute to a palindrome if number of odd occurring characters is at most one.
- One occurrence of the only odd character always goes to middle.
- Half of counts of all characters decide the result. In case of odd occurring character, it is floor of half. The other half is automatically decided
For example, if input string is “aabbccd”, the count of palindromic permutations is 3! (We get three by taking floor of half of all counts)
What if half itself has repeated characters?
We apply a simple combinatorial rule and divide by factorial of half.
For example “aaaaaabbbb”, floor of half of string is 5. In half of a palindromic string, ‘a’ is repeated three times and ‘b’ is repeated two times, so our result is (5!) / (2!) * (3!).
Implementation:
C++
// CPP program to find number of // palindromic permutations of a // given string #include <bits/stdc++.h> using namespace std; const int MAX = 256; // Returns factorial of n long long int fact( int n) { long long int res = 1; for ( int i = 2; i <= n; i++) res = res * i; return res; } // Returns count of palindromic // permutations of str. int countPalinPermutations(string &str) { // Count frequencies of all characters int n = str.length(); int freq[MAX] = { 0 }; for ( int i = 0; i < n; i++) freq[str[i]]++; // Since half of the characters // decide count of palindromic // permutations, we take (n/2)! long long int res = fact(n / 2); // To make sure that there is at // most one odd occurring char bool oddFreq = false ; // Traverse through all counts for ( int i = 0; i < MAX; i++) { int half = freq[i] / 2; // To make sure that the // string can permute to // form a palindrome if (freq[i] % 2 != 0) { // If there are more than // one odd occurring chars if (oddFreq == true ) return 0; oddFreq = true ; } // Divide all permutations with // repeated characters res = res / fact(half); } return res; } // Driver code int main() { string str = "gffg" ; cout << countPalinPermutations(str); return 0; } |
Java
// Java program to find number of // palindromic permutations of a // given string class GFG { static final int MAX = 256 ; // Returns factorial of n static long fact( int n) { long res = 1 ; for ( int i = 2 ; i <= n; i++) res = res * i; return res; } // Returns count of palindromic // permutations of str. static int countPalinPermutations(String str) { // Count frequencies of all characters int n = str.length(); int freq[]= new int [MAX]; for ( int i = 0 ; i < n; i++) freq[str.charAt(i)]++; // Since half of the characters // decide count of palindromic // permutations, we take (n/2)! long res = fact(n / 2 ); // To make sure that there is at // most one odd occurring char boolean oddFreq = false ; // Traverse through all counts for ( int i = 0 ; i < MAX; i++) { int half = freq[i] / 2 ; // To make sure that the // string can permute to // form a palindrome if (freq[i] % 2 != 0 ) { // If there are more than // one odd occurring chars if (oddFreq == true ) return 0 ; oddFreq = true ; } // Divide all permutations with // repeated characters res = res / fact(half); } return ( int )res; } // Driver code public static void main (String[] args) { String str = "gffg" ; System.out.print( countPalinPermutations(str)); } } // This code is contributed by Anant Agarwal. |
Python3
# Python3 program to find number of # palindromic permutations of a # given string MAX = 256 # Returns factorial of n def fact(n) : res = 1 for i in range ( 2 , n + 1 ) : res = res * i return res # Returns count of palindromic # permutations of str. def countPalinPermutations( str ) : global MAX # Count frequencies of # all characters n = len ( str ) freq = [ 0 ] * MAX ; for i in range ( 0 , n) : freq[ ord ( str [i])] = freq[ ord ( str [i])] + 1 ; # Since half of the characters # decide count of palindromic # permutations, we take (n/2)! res = fact( int (n / 2 )) # To make sure that there is at # most one odd occurring char oddFreq = False # Traverse through all counts for i in range ( 0 , MAX ) : half = int (freq[i] / 2 ) # To make sure that the # string can permute to # form a palindrome if (freq[i] % 2 ! = 0 ): # If there are more than # one odd occurring chars if (oddFreq = = True ): return 0 oddFreq = True # Divide all permutations # with repeated characters res = int (res / fact(half)) return res # Driver code str = "gffg" print (countPalinPermutations( str )) # This code is contributed by Manish Shaw # (manishshaw1) |
C#
// C# program to find number of // palindromic permutations of a // given string using System; class GFG { static int MAX = 256; // Returns factorial of n static long fact( int n) { long res = 1; for ( int i = 2; i <= n; i++) res = res * i; return res; } // Returns count of palindromic // permutations of str. static int countPalinPermutations( string str) { // Count frequencies of all characters int n = str.Length; int []freq= new int [MAX]; for ( int i = 0; i < n; i++) freq[str[i]]++; // Since half of the characters // decide count of palindromic // permutations, we take (n/2)! long res = fact(n / 2); // To make sure that there is at // most one odd occurring char bool oddFreq = false ; // Traverse through all counts for ( int i = 0; i < MAX; i++) { int half = freq[i] / 2; // To make sure that the // string can permute to // form a palindrome if (freq[i] % 2 != 0) { // If there are more than // one odd occurring chars if (oddFreq == true ) return 0; oddFreq = true ; } // Divide all permutations with // repeated characters res = res / fact(half); } return ( int )res; } // Driver code public static void Main () { string str = "gffg" ; Console.WriteLine( countPalinPermutations(str)); } } // This code is contributed by vt_m. |
PHP
<?php // PHP program to find number of // palindromic permutations of a // given string $MAX = 256; // Returns factorial of n function fact( $n ) { $res = 1; for ( $i = 2; $i <= $n ; $i ++) $res = $res * $i ; return $res ; } // Returns count of palindromic // permutations of str. function countPalinPermutations(& $str ) { global $MAX ; // Count frequencies of // all characters $n = strlen ( $str ); $freq = (0); for ( $i = 0; $i < $n ; $i ++) // Since half of the characters // decide count of palindromic // permutations, we take (n/2)! $res = fact( $n / 2); // To make sure that there is at // most one odd occurring char $oddFreq = false; // Traverse through all counts for ( $i = 0; $i < $MAX ; $i ++) { $half = $freq [ $i ] / 2; // To make sure that the // string can permute to // form a palindrome if ( $freq [ $i ] % 2 != 0) { // If there are more than // one odd occurring chars if ( $oddFreq == true) return 0; $oddFreq = true; } // Divide all permutations // with repeated characters $res = $res / fact( $half ); } return $res ; } // Driver code $str = "gffg" ; echo countPalinPermutations( $str ); // This code is contributed by ajit ?> |
Javascript
<script> // Javascript program to find number of // palindromic permutations of a // given string let MAX = 256; // Returns factorial of n function fact(n) { let res = 1; for (let i = 2; i <= n; i++) res = res * i; return res; } // Returns count of palindromic // permutations of str. function countPalinPermutations(str) { // Count frequencies of all characters let n = str.length; let freq = new Array(MAX); freq.fill(0); for (let i = 0; i < n; i++) freq[str[i].charCodeAt()]++; // Since half of the characters // decide count of palindromic // permutations, we take (n/2)! let res = fact(n / 2); // To make sure that there is at // most one odd occurring char let oddFreq = false ; // Traverse through all counts for (let i = 0; i < MAX; i++) { let half = freq[i] / 2; // To make sure that the // string can permute to // form a palindrome if (freq[i] % 2 != 0) { // If there are more than // one odd occurring chars if (oddFreq == true ) return 0; oddFreq = true ; } // Divide all permutations with // repeated characters res = res / fact(half); } return res; } let str = "gffg" ; document.write(countPalinPermutations(str)); </script> |
Output :
2
The above solution causes overflow very early. We can avoid overflow by doing modular arithmetic. In the next article, we would be discussing modular arithmetic-based approach.
Please Login to comment...