Number of pairs whose sum is a power of 2 | Set 2

Given an array arr[] consisting of N positive integers, the task is to count the maximum number of pairs (arr[i], arr[j]) such that arr[i] + arr[j] is a power of 2.

Examples:

Input: arr[] = {1, -1, 2, 3}
Output: 5
Explanation: (1, 1), (2, 2), (1, 3), (-1, 3), (-1, 2) are the valid pairs whose sum is power of 2.

Input: arr[] = {1, 1, 1}
Output: 6

Naive Approach: The simplest approach to solve the problem is to generate all possible pairs from a given array and for each pair, check if the sum of the pair is a power of 2 or not
Time Complexity: O(N2
Auxiliary Space: O(1)

Efficient Approach: The above approach can be optimized using HashMap. Follow the steps below to solve the problem:



Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count all pairs
// whose sum is a power of two
int countPair(int arr[], int n)
{
    // Stores the frequency of
    // each element of the array
    map<int, int> m;
 
    // Update frequency of
    // array elements
    for (int i = 0; i < n; i++)
        m[arr[i]]++;
 
    // Stores count of
    // required pairs
    int ans = 0;
 
    for (int i = 0; i < 31; i++) {
 
        // Current power of 2
        int key = pow(2, i);
 
        // Traverse the array
        for (int j = 0; j < n; j++) {
 
            int k = key - arr[j];
 
            // If pair does not exist
            if (m.find(k) == m.end())
                continue;
 
            // Increment count of pairs
            else
                ans += m[k];
 
            if (k == arr[j])
                ans++;
        }
    }
 
    // Return the count of pairs
    return ans / 2;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 8, 2, 10, 6 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << countPair(arr, n) << endl;
 
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to implement
// the above approach
import java.util.*;
 
class GFG {
    // Function to count all pairs
    // whose sum is power of two
    static int countPair(int[] arr, int n)
    {
        // Stores the frequency of
        // each element of the array
        Map<Integer, Integer> m
            = new HashMap<>();
 
        // Update the frequency of
        // array elements
        for (int i = 0; i < n; i++)
            m.put(arr[i], m.getOrDefault(
                            arr[i], 0)
                            + 1);
 
        // Stores the count of pairs
        int ans = 0;
 
        // Generate powers of 2
        for (int i = 0; i < 31; i++) {
 
            // Generate current power of 2
            int key = (int)Math.pow(2, i);
 
            // Traverse the array
            for (int j = 0; j < arr.length;
                j++) {
 
                int k = key - arr[j];
 
                // Increase ans by m[k], if
                // pairs with sum 2^i exists
                ans += m.getOrDefault(k, 0);
 
                // Increase ans again if k = arr[j]
                if (k == arr[j])
                    ans++;
            }
        }
 
        // Return count of pairs
        return ans / 2;
    }
 
    // Driver function
    public static void main(String[] args)
    {
        int[] arr = { 1, -1, 2, 3 };
        int n = arr.length;
        System.out.println(countPair(arr, n));
    }
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to implement
# the above approach
from math import pow
 
# Function to count all pairs
# whose sum is a power of two
def countPair(arr, n):
     
    # Stores the frequency of
    # each element of the array
    m = {}
 
    # Update frequency of
    # array elements
    for i in range(n):
        m[arr[i]] = m.get(arr[i], 0) + 1
 
    # Stores count of
    # required pairs
    ans = 0
 
    for i in range(31):
         
        # Current power of 2
        key = int(pow(2, i))
 
        # Traverse the array
        for j in range(n):
            k = key - arr[j]
 
            # If pair does not exist
            if k not in m:
                continue
 
            # Increment count of pairs
            else:
                ans += m.get(k, 0)
 
            if (k == arr[j]):
                ans += 1
 
    # Return the count of pairs
    return ans // 2
 
# Driver Code
if __name__ == '__main__':
     
    arr =  [ 1, 8, 2, 10, 6 ]
    n = len(arr)
     
    print(countPair(arr, n))
 
# This code is contributed by SURENDRA_GANGWAR
chevron_right

Output:

5

Time Complexity: O(NlogN)

Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : SURENDRA_GANGWAR

Article Tags :