Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Number of pairs of Array where the max and min of pair is same as their indices

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given an array A[] of N  integers, the task is to calculate the total number of pairs of indices (i, j) satisfying the following conditions –

  • 1 ≤ i < j ≤ N
  • minimum(A[i], A[j]) = i
  • maximum(A[i], A[j]) = j

Note: 1-based indexing is considered.

Examples:

Input: N = 4, A[] = {1, 3, 2, 4}
Output: 2
Explanation: First pair of indices is (1, 4),  
As minimum(A[1], A[4]) = minimum(1, 4) = 1 and 
maximum(A[1], A[4]) = maximum(1, 4) = 4.
Similarly, second pair is (3, 2).

Input: N = 10, A[] = {5, 8, 2, 2, 1, 6, 7, 2, 9, 10}
Output: 8

Approach: The problem can be solved based on the following idea: 

The conditions given in the problem would be satisfied, if one of these two conditions holds :

  • 1st Type: A[i] = i and A[j] = j
  • 2nd Type: A[i] = j and A[j] = i

Say there are K such indices where A[i] = i. So, number of pairs satisfying the first condition is K * (K – 1) / 2.
The number of pairs satisfying the second condition can be simply counted by traversing through the array. 
i.e., checking if A[i] ≠ i and A[A[i]] = i.

Follow the steps mentioned below to implement the idea: 

  • Traverse through the array and find the position where the value and the position are same (say K).
  • Find the pairs of the first type mentioned above using the provided formula.
  • Now traverse again using and find the second type of pair following the mentioned method.

Below is the implementation of this approach:

C++

// C++ code for the above approach

#include <bits/stdc++.h>
using namespace std;

// Function to count Number of pairs in
// array satisfying the given conditions
int countPairs(int N, int A[])
{
    // Variable to store the number of indices such
    // that their value is equal to their position
    int count = 0;

    // Variable to store the total number of pairs
    // following the given condition
    int answer = 0;

    for (int i = 0; i < N; i++) {
        if (A[i] == (i + 1)) {
            count++;
        }
    }

    // Pairs following the first condition
    answer += count * (count - 1) / 2;

    // Calculating number of pairs following
    // the second condition
    for (int i = 0; i < N; i++) {
        if (A[i] > (i + 1) && A[A[i] - 1] == (i + 1)) {
            answer++;
        }
    }

    // Returning answer
    return answer;
}

// Driver Code
int main()
{
    int N = 4;
    int A[] = { 1, 3, 2, 4 };

    // Function call
    int answer = countPairs(N, A);
    cout << answer << endl;
    return 0;
}

Java

/*package whatever //do not write package name here */
import java.io.*;

class GFG {

  // Function to count Number of pairs in
  // array satisfying the given conditions
  static int countPairs(int N, int A[])
  {
    
    // Variable to store the number of indices such
    // that their value is equal to their position
    int count = 0;

    // Variable to store the total number of pairs
    // following the given condition
    int answer = 0;

    for (int i = 0; i < N; i++) {
      if (A[i] == (i + 1)) {
        count++;
      }
    }

    // Pairs following the first condition
    answer += count * (count - 1) / 2;

    // Calculating number of pairs following
    // the second condition
    for (int i = 0; i < N; i++) {
      if (A[i] > (i + 1) && A[A[i] - 1] == (i + 1)) {
        answer++;
      }
    }

    // Returning answer
    return answer;
  }

  public static void main (String[] args)
  {

    int N = 4;
    int A[] = { 1, 3, 2, 4 };

    // Function call
    int answer = countPairs(N, A);
    System.out.println(answer);
  }
}

// This code is contributed by aadityapburujwale

Python3

 # Python3 code for the above approach

# Function to count Number of pairs
# in array satisfying the given conditions
def countpairs(n,a)->int:
  
    # Variable to store the number of indices 
    # such that their value is equal to their position
    count = 0
    
    # Variable to store the total number 
    # of pairs following the given condition
    answer = 0

    for i in range(0,n):
        if(a[i] == i+1):
            count += 1
    
    # Pairs following the first condition
    answer += ((count)*(count-1))//2

    # Calculating number of pairs following the second condition
    for i in range(0,n):
        if(a[i] > (i+1) and a[a[i]-1] == (i+1)):
            answer += 1
    
    # Returning answer
    return answer

# Driver Code
if __name__ == '__main__':
    n = 4
    a = [1,3,2,4]
    
    # Function call
    ans = countpairs(n,a)
    print(ans)
    
    # This code is contributed by ajaymakvana.

C#

// C# program for above approach
using System;
class GFG
{

  // Function to count Number of pairs in
  // array satisfying the given conditions
  static int countPairs(int N, int[] A)
  {
    
    // Variable to store the number of indices such
    // that their value is equal to their position
    int count = 0;

    // Variable to store the total number of pairs
    // following the given condition
    int answer = 0;

    for (int i = 0; i < N; i++) {
      if (A[i] == (i + 1)) {
        count++;
      }
    }

    // Pairs following the first condition
    answer += count * (count - 1) / 2;

    // Calculating number of pairs following
    // the second condition
    for (int i = 0; i < N; i++) {
      if (A[i] > (i + 1) && A[A[i] - 1] == (i + 1)) {
        answer++;
      }
    }

    // Returning answer
    return answer;
  }

// Driver Code
public static void Main()
{
    int N = 4;
    int[] A = { 1, 3, 2, 4 };

    // Function call
    int answer = countPairs(N, A);
    Console.Write(answer);
}
}

// This code is contributed by code_hunt.

Javascript

<script>
// Javascript  code for the above approach

// Function to count Number of pairs in
// array satisfying the given conditions
function countPairs( N,A)
{
    // Variable to store the number of indices such
    // that their value is equal to their position
    let count = 0;

    // Variable to store the total number of pairs
    // following the given condition
    let answer = 0;

    for (let i = 0; i < N; i++) {
        if (A[i] == (i + 1)) {
            count++;
        }
    }

    // Pairs following the first condition
    answer += count * (count - 1) / 2;

    // Calculating number of pairs following
    // the second condition
    for ( let i = 0; i < N; i++) {
        if (A[i] > (i + 1) && A[A[i] - 1] == (i + 1)) {
            answer++;
        }
    }

    // Returning answer
    return answer;
}

// Driver Code

    let N = 4;
    let A = [ 1, 3, 2, 4 ];

    // Function call
    let answer = countPairs(N, A);
    document.write(answer);
    
    // This code is contributed by satwik4409.
    </script>
Output

2

Time Complexity: O(N)
Auxiliary Space: O(1)

My Personal Notes arrow_drop_up
Last Updated : 25 Aug, 2022
Like Article
Save Article
Similar Reads
Related Tutorials