Number of ones in the smallest repunit

Given a positive integer N whose unit’s digit is 3. Find the number of 1s in the smallest repunit which is divisible by the given number N. Every number whose unit’s digit is 3 has a repunit as its multiple. A repunit is a number which has only ones. It is of the form (10n – 1)/9.

Examples:

Input: 3
Output: 3
As 3 divides 111 which is the smallest repunit
multiple of the number. So the number of ones in 111 is 3.



Input: 13
Output: 6

The repunits are 1, 11, 111, 1111, …. the next repunit to x will always be x*10+1. If the remainder left by x repunit is r then remainder left by the next repunit will always be (r*10+1)%n. Since the repunit can be very large, there is no need to find the repunit number. Simply counting the number of ones will give us the answer.
So, find out the remainders of all repunit numbers until the remainder becomes 0. Once it does, then the count of iterations done to make remainder 0 will be the number of 1’s.

Below is the implementation of above approach :

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to print the number of 1s in
// smallest repunit multiple of the number.
#include <bits/stdc++.h>
using namespace std;
  
// Function to find number of 1s in
// smallest repunit multiple of the number
int countOnes(int n)
{
    // to store number of 1s in smallest
    // repunit multiple of the number.
    int count = 1;
  
    // initialize rem with 1
    int rem = 1;
  
    // run loop until rem becomes zero
    while (rem != 0) {
  
        // rem*10 + 1 here represents
        // the repunit modulo n
        rem = (rem * 10 + 1) % n;
        count++;
    }
  
    // when remainder becomes 0
    // return count
    return count;
}
  
// Driver Code
int main()
{
    int n = 13;
  
    // Calling function
    cout << countOnes(n);
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to print the 
// number of 1s in smallest 
// repunit multiple of the number.
import java.io.*;
  
class GFG 
{
// Function to find number 
// of 1s in smallest repunit
// multiple of the number
static int countOnes(int n)
{
    // to store number of 1s 
    // in smallest repunit
    // multiple of the number.
    int count = 1;
  
    // initialize rem with 1
    int rem = 1;
  
    // run loop until 
    // rem becomes zero
    while (rem != 0
    {
  
        // rem*10 + 1 here 
        // represents the 
        // repunit modulo n
        rem = (rem * 10 + 1) % n;
        count++;
    }
  
    // when remainder becomes
    // 0 return count
    return count;
}
  
// Driver Code
public static void main (String[] args)
{
int n = 13;
  
// Calling function
System.out.println(countOnes(n));
}
}
  
// This code is contributed by akt_mit

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to print the 
# number of 1s in smallest
# repunit multiple of the number.
  
# Function to find number 
# of 1s in smallest repunit
# multiple of the number
def countOnes(n):
      
    # to store number of 1s 
    # in smallest repunit
    # multiple of the number.
    count = 1;
  
    # initialize rem with 1
    rem = 1;
  
    # run loop until 
    # rem becomes zero
    while (rem != 0):
  
        # rem*10 + 1 here represents
        # the repunit modulo n
        rem = (rem * 10 + 1) % n;
        count = count + 1;
  
    # when remainder becomes
    # 0 return count
    return count;
  
# Driver Code
n = 13;
  
# Calling function
print(countOnes(n));
      
# This code is contributed by mits

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to print the 
// number of 1s in smallest 
// repunit multiple of the number.
using System;
  
class GFG
{
      
// Function to find number 
// of 1s in smallest repunit
// multiple of the number
static int countOnes(int n)
{
    // to store number of 1s 
    // in smallest repunit
    // multiple of the number.
    int count = 1;
  
    // initialize rem with 1
    int rem = 1;
  
    // run loop until 
    // rem becomes zero
    while (rem != 0) 
    {
  
        // rem*10 + 1 here represents
        // the repunit modulo n
        rem = (rem * 10 + 1) % n;
        count++;
    }
  
    // when remainder becomes 0
    // return count
    return count;
}
  
// Driver Code
static public void Main ()
{
int n = 13;
  
// Calling function
Console.WriteLine (countOnes(n));
}
}
  
// This code is contributed by ajit

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to print the 
// number of 1s in smallest
// repunit multiple of the number.
  
// Function to find number 
// of 1s in smallest repunit
// multiple of the number
function countOnes($n)
{
    // to store number of 1s 
    // in smallest repunit
    // multiple of the number.
    $count = 1;
  
    // initialize rem with 1
    $rem = 1;
  
    // run loop until 
    // rem becomes zero
    while ($rem != 0) 
    {
  
        // rem*10 + 1 here represents
        // the repunit modulo n
        $rem = ($rem * 10 + 1) % $n;
        $count++;
    }
  
    // when remainder becomes
    // 0 return count
    return $count;
}
  
// Driver Code
$n = 13;
  
// Calling function
echo countOnes($n);
      
// This code is contributed by ajit
?>

chevron_right


Output:

6


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : jit_t, Mithun Kumar