Skip to content
Related Articles

Related Articles

Improve Article
Number of occurrences of a given angle formed using 3 vertices of a n-sided regular polygon
  • Last Updated : 07 Apr, 2021

Given an n-sided regular polygon and an angle θ, the task is to find number of occurrences of angle ( Ai, Aj, Ak ) = θ ( i < j < k) in a regular n-gon (regular polygon with n vertices) with vertices marked as A1, A2, …, An.
Examples: 
 

Input: n = 4, ang = 90
Output: 4

Input: n = 6, ang = 50
Output: 0

 

Approach: 
 

  1. First we check whether such an angle can exist or not.
  2. Consider the vertices to be x, y, and z and the angle to find be ∠ xyz.
  3. The number of edges between x and y be a and the number of edges between y and z be b.
  4. Then ∠ xyz = 180 – (180*(a+b)) / n.
  5. Thus ∠ xyz * n (mod 180) = 0.
  6. Next we need to find the count of such angles.
  7. As the polygon is regular we just need to calculate the count of such an angle at one vertex and can directly multiply our result by n (the number of vertices).
  8. At each vertex the angle can be found at n-1-freq times where freq = (n*ang)/180 and depicts the number of edges remaining after creating the required angle i.e. the number of edges between z and x.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function that calculates occurrences
// of given angle that can be created
// using any 3 sides
int solve(int ang, int n)
{
 
    // Maximum angle in a regular n-gon
    // is equal to the interior angle
    // If the given angle
    // is greater than the interior angle
    // then the given angle cannot be created
    if ((ang * n) > (180 * (n - 2))) {
        return 0;
    }
 
    // The given angle times n should be divisible
    // by 180 else it cannot be created
    else if ((ang * n) % 180 != 0) {
        return 0;
    }
 
    // Initialise answer
    int ans = 1;
 
    // Calculate the frequency
    // of given angle for each vertex
    int freq = (ang * n) / 180;
 
    // Multiply answer by frequency.
    ans = ans * (n - 1 - freq);
 
    // Multiply answer by the number of vertices.
    ans = ans * n;
 
    return ans;
}
 
// Driver code
int main()
{
    int ang = 90, n = 4;
 
    cout << solve(ang, n);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
 
// Function that calculates occurrences
// of given angle that can be created
// using any 3 sides
static int solve(int ang, int n)
{
 
    // Maximum angle in a regular n-gon
    // is equal to the interior angle
    // If the given angle
    // is greater than the interior angle
    // then the given angle cannot be created
    if ((ang * n) > (180 * (n - 2)))
    {
        return 0;
    }
 
    // The given angle times n should be divisible
    // by 180 else it cannot be created
    else if ((ang * n) % 180 != 0)
    {
        return 0;
    }
 
    // Initialise answer
    int ans = 1;
 
    // Calculate the frequency
    // of given angle for each vertex
    int freq = (ang * n) / 180;
 
    // Multiply answer by frequency.
    ans = ans * (n - 1 - freq);
 
    // Multiply answer by the number of vertices.
    ans = ans * n;
 
    return ans;
}
 
// Driver code
public static void main (String[] args)
{
    int ang = 90, n = 4;
    System.out.println(solve(ang, n));
}
}
 
// This code is contributed by Rajput-Ji

Python3




# Python3 implementation of the approach
 
# Function that calculates occurrences
# of given angle that can be created
# using any 3 sides
def solve(ang, n):
 
    # Maximum angle in a regular n-gon
    # is equal to the interior angle
    # If the given angle
    # is greater than the interior angle
    # then the given angle cannot be created
    if ((ang * n) > (180 * (n - 2))):
        return 0
 
    # The given angle times n should be divisible
    # by 180 else it cannot be created
    elif ((ang * n) % 180 != 0):
        return 0
 
    # Initialise answer
    ans = 1
 
    # Calculate the frequency
    # of given angle for each vertex
    freq = (ang * n) // 180
 
    # Multiply answer by frequency.
    ans = ans * (n - 1 - freq)
 
    # Multiply answer by the number of vertices.
    ans = ans * n
 
    return ans
 
# Driver code
ang = 90
n = 4
 
print(solve(ang, n))
 
# This code is contributed by Mohit Kumar

C#




// C# implementation of the approach
using System;
     
class GFG
{
 
// Function that calculates occurrences
// of given angle that can be created
// using any 3 sides
static int solve(int ang, int n)
{
 
    // Maximum angle in a regular n-gon
    // is equal to the interior angle
    // If the given angle
    // is greater than the interior angle
    // then the given angle cannot be created
    if ((ang * n) > (180 * (n - 2)))
    {
        return 0;
    }
 
    // The given angle times n should be divisible
    // by 180 else it cannot be created
    else if ((ang * n) % 180 != 0)
    {
        return 0;
    }
 
    // Initialise answer
    int ans = 1;
 
    // Calculate the frequency
    // of given angle for each vertex
    int freq = (ang * n) / 180;
 
    // Multiply answer by frequency.
    ans = ans * (n - 1 - freq);
 
    // Multiply answer by the
    // number of vertices.
    ans = ans * n;
 
    return ans;
}
 
// Driver code
public static void Main (String[] args)
{
    int ang = 90, n = 4;
    Console.WriteLine(solve(ang, n));
}
}
 
// This code is contributed by Princi Singh

Javascript




<script>
 
// JavaScript implementation of the approach
// Function that calculates occurrences
// of given angle that can be created
// using any 3 sides
function solve(ang , n)
{
 
    // Maximum angle in a regular n-gon
    // is equal to the interior angle
    // If the given angle
    // is greater than the interior angle
    // then the given angle cannot be created
    if ((ang * n) > (180 * (n - 2)))
    {
        return 0;
    }
 
    // The given angle times n should be divisible
    // by 180 else it cannot be created
    else if ((ang * n) % 180 != 0)
    {
        return 0;
    }
 
    // Initialise answer
    var ans = 1;
 
    // Calculate the frequency
    // of given angle for each vertex
    var freq = (ang * n) / 180;
 
    // Multiply answer by frequency.
    ans = ans * (n - 1 - freq);
 
    // Multiply answer by the number of vertices.
    ans = ans * n;
 
    return ans;
}
 
// Driver code
var ang = 90, n = 4;
document.write(solve(ang, n));
 
 
// This code contributed by shikhasingrajput 
 
</script>
Output: 
4

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :