Skip to content
Related Articles

Related Articles

Improve Article

Number of non-decreasing sub-arrays of length K

  • Difficulty Level : Medium
  • Last Updated : 12 May, 2021

Given an array arr[] of length N, the task is to find the number of non-decreasing sub-arrays of length K.
Examples: 
 

Input: arr[] = {1, 2, 3, 2, 5}, K = 2 
Output:
{1, 2}, {2, 3} and {2, 5} are the increasing 
subarrays of length 2.
Input: arr[] = {1, 2, 3, 2, 5}, K = 1 
Output:
 

 

Naive approach Generate all the sub-arrays of length K and then check whether the sub-array satisfies the condition. Thus, the time complexity of the approach will be O(N * K).
Better approach: A better approach will be using two-pointer technique. Let’s say the current index is i
 

  • Find the largest index j, such that the sub-array arr[i…j] is non-decreasing. This can be achieved by simply incrementing the value of j starting from i + 1 and checking whether arr[j] is greater than arr[j – 1].
  • Let’s say the length of the sub-array found in the previous step is L. The number of sub-arrays of length K contained in it will be max(L – K + 1, 0).
  • Now, update i = j and repeat the above steps while i is in the index range.

Below is the implementation of the above approach: 
 



C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of
// increasing subarrays of length k
int cntSubArrays(int* arr, int n, int k)
{
    // To store the final result
    int res = 0;
 
    int i = 0;
    // Two pointer loop
    while (i < n) {
 
        // Initialising j
        int j = i + 1;
 
        // Looping till the subarray increases
        while (j < n and arr[j] >= arr[j - 1])
            j++;
 
        // Updating the required count
        res += max(j - i - k + 1, 0);
 
        // Updating i
        i = j;
    }
 
    // Returning res
    return res;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 2, 3, 2, 5 };
    int n = sizeof(arr) / sizeof(int);
    int k = 2;
 
    cout << cntSubArrays(arr, n, k);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
 
// Function to return the count of
// increasing subarrays of length k
static int cntSubArrays(int []arr, int n, int k)
{
    // To store the final result
    int res = 0;
 
    int i = 0;
     
    // Two pointer loop
    while (i < n)
    {
 
        // Initialising j
        int j = i + 1;
 
        // Looping till the subarray increases
        while (j < n && arr[j] >= arr[j - 1])
            j++;
 
        // Updating the required count
        res += Math.max(j - i - k + 1, 0);
 
        // Updating i
        i = j;
    }
 
    // Returning res
    return res;
}
 
// Driver code
public static void main(String []args)
{
    int arr[] = { 1, 2, 3, 2, 5 };
    int n = arr.length;
    int k = 2;
 
    System.out.println(cntSubArrays(arr, n, k));
}
}
 
// This code is contributed by PrinciRaj1992

Python3




# Python3 implementation of the approach
 
# Function to return the count of
# increasing subarrays of length k
def cntSubArrays(arr, n, k) :
 
    # To store the final result
    res = 0;
 
    i = 0;
     
    # Two pointer loop
    while (i < n) :
 
        # Initialising j
        j = i + 1;
 
        # Looping till the subarray increases
        while (j < n and arr[j] >= arr[j - 1]) :
            j += 1;
 
        # Updating the required count
        res += max(j - i - k + 1, 0);
 
        # Updating i
        i = j;
 
    # Returning res
    return res;
 
# Driver code
if __name__ == "__main__" :
     
    arr = [ 1, 2, 3, 2, 5 ];
    n = len(arr);
    k = 2;
 
    print(cntSubArrays(arr, n, k));
     
# This code is contributed by AnkitRai01

C#




// C# implementation of the approach
using System;
     
class GFG
{
 
// Function to return the count of
// increasing subarrays of length k
static int cntSubArrays(int []arr, int n, int k)
{
    // To store the final result
    int res = 0;
 
    int i = 0;
     
    // Two pointer loop
    while (i < n)
    {
 
        // Initialising j
        int j = i + 1;
 
        // Looping till the subarray increases
        while (j < n && arr[j] >= arr[j - 1])
            j++;
 
        // Updating the required count
        res += Math.Max(j - i - k + 1, 0);
 
        // Updating i
        i = j;
    }
 
    // Returning res
    return res;
}
 
// Driver code
public static void Main(String []args)
{
    int []arr = { 1, 2, 3, 2, 5 };
    int n = arr.Length;
    int k = 2;
 
    Console.WriteLine(cntSubArrays(arr, n, k));
}
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the count of
// increasing subarrays of length k
function cntSubArrays(arr, n, k)
{
    // To store the final result
    var res = 0;
 
    var i = 0;
    // Two pointer loop
    while (i < n) {
 
        // Initialising j
        var j = i + 1;
 
        // Looping till the subarray increases
        while (j < n && arr[j] >= arr[j - 1])
            j++;
 
        // Updating the required count
        res += Math.max(j - i - k + 1, 0);
 
        // Updating i
        i = j;
    }
 
    // Returning res
    return res;
}
 
// Driver code
var arr = [ 1, 2, 3, 2, 5 ];
var n = arr.length;
var k = 2;
document.write( cntSubArrays(arr, n, k));
 
</script>
Output: 
3

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :