Number of non-decreasing sub-arrays of length greater than or equal to K

Given an array arr[] of N elements and an integer K, the task is to find the number of non-decreasing sub-arrays of length greater than or equal to K.

Examples:

Input: arr[] = {1, 2, 3}, K = 2
Output: 3
{1, 2}, {2, 3} and {1, 2, 3} are the valid subarrays.



Input: arr[] = {3, 2, 1}, K = 1
Output: 3

Naive approach: A simple approach is to generate all the sub-arrays of length greater than or equal to K and then check whether the sub-array satisfies the condition. Thus, the time complexity of the approach will be O(N3).

Efficient approach: A better approach will be using the two-pointer technique.

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the required count
int findCnt(int* arr, int n, int k)
{
    // To store the final result
    int ret = 0;
  
    // Two pointer loop
    int i = 0;
    while (i < n) {
  
        // Initialising j
        int j = i + 1;
  
        // Looping till the subarray increases
        while (j < n and arr[j] >= arr[j - 1])
            j++;
        int x = max(0, j - i - k + 1);
  
        // Update ret
        ret += (x * (x + 1)) / 2;
  
        // Update i
        i = j;
    }
  
    // Return ret
    return ret;
}
  
// Driver code
int main()
{
    int arr[] = { 5, 4, 3, 2, 1 };
    int n = sizeof(arr) / sizeof(int);
    int k = 2;
  
    cout << findCnt(arr, n, k);
  
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG
{
  
// Function to return the required count
static int findCnt(int []arr, int n, int k)
{
    // To store the final result
    int ret = 0;
  
    // Two pointer loop
    int i = 0;
    while (i < n) 
    {
  
        // Initialising j
        int j = i + 1;
  
        // Looping till the subarray increases
        while (j < n && arr[j] >= arr[j - 1])
            j++;
        int x = Math.max(0, j - i - k + 1);
  
        // Update ret
        ret += (x * (x + 1)) / 2;
  
        // Update i
        i = j;
    }
  
    // Return ret
    return ret;
}
  
// Driver code
public static void main(String []args)
{
    int arr[] = { 5, 4, 3, 2, 1 };
    int n = arr.length;
    int k = 2;
  
    System.out.println(findCnt(arr, n, k));
}
}
  
// This code is contributed by Rajput-Ji
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
  
# Function to return the required count 
def findCnt(arr, n, k) :
  
    # To store the final result 
    ret = 0
  
    # Two pointer loop 
    i = 0
    while (i < n) :
  
        # Initialising j 
        j = i + 1
  
        # Looping till the subarray increases 
        while (j < n and arr[j] >= arr[j - 1]) :
            j += 1
              
        x = max(0, j - i - k); 
  
        # Update ret 
        ret += (x * (x + 1)) / 2
  
        # Update i 
        i = j; 
  
    # Return ret 
    return ret; 
  
# Driver code 
if __name__ == "__main__"
  
    arr = [ 5, 4, 3, 2, 1 ]; 
    n = len(arr); 
    k = 2
  
    print(findCnt(arr, n, k)); 
  
# This code is contributed by AnkitRai01
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
  
class GFG
{
  
// Function to return the required count
static int findCnt(int []arr, int n, int k)
{
    // To store the final result
    int ret = 0;
  
    // Two pointer loop
    int i = 0;
    while (i < n) 
    {
  
        // Initialising j
        int j = i + 1;
  
        // Looping till the subarray increases
        while (j < n && arr[j] >= arr[j - 1])
            j++;
        int x = Math.Max(0, j - i - k + 1);
  
        // Update ret
        ret += (x * (x + 1)) / 2;
  
        // Update i
        i = j;
    }
  
    // Return ret
    return ret;
}
  
// Driver code
public static void Main(String []args)
{
    int []arr = { 5, 4, 3, 2, 1 };
    int n = arr.Length;
    int k = 2;
  
    Console.WriteLine(findCnt(arr, n, k));
}
}
  
// This code is contributed by PrinciRaj1992
chevron_right

Output:
0

GeeksforGeeks has prepared a complete interview preparation course with premium videos, theory, practice problems, TA support and many more features. Please refer Placement 100 for details





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :