Number of non-decreasing sub-arrays of length greater than or equal to K

Given an array arr[] of N elements and an integer K, the task is to find the number of non-decreasing sub-arrays of length greater than or equal to K.

Examples:

Input: arr[] = {1, 2, 3}, K = 2
Output: 3
{1, 2}, {2, 3} and {1, 2, 3} are the valid subarrays.

Input: arr[] = {3, 2, 1}, K = 1
Output: 3

Naive approach: A simple approach is to generate all the sub-arrays of length greater than or equal to K and then check whether the sub-array satisfies the condition. Thus, the time complexity of the approach will be O(N3).



Efficient approach: A better approach will be using the two-pointer technique.

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the required count
int findCnt(int* arr, int n, int k)
{
    // To store the final result
    int ret = 0;
  
    // Two pointer loop
    int i = 0;
    while (i < n) {
  
        // Initialising j
        int j = i + 1;
  
        // Looping till the subarray increases
        while (j < n and arr[j] >= arr[j - 1])
            j++;
        int x = max(0, j - i - k + 1);
  
        // Update ret
        ret += (x * (x + 1)) / 2;
  
        // Update i
        i = j;
    }
  
    // Return ret
    return ret;
}
  
// Driver code
int main()
{
    int arr[] = { 5, 4, 3, 2, 1 };
    int n = sizeof(arr) / sizeof(int);
    int k = 2;
  
    cout << findCnt(arr, n, k);
  
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG
{
  
// Function to return the required count
static int findCnt(int []arr, int n, int k)
{
    // To store the final result
    int ret = 0;
  
    // Two pointer loop
    int i = 0;
    while (i < n) 
    {
  
        // Initialising j
        int j = i + 1;
  
        // Looping till the subarray increases
        while (j < n && arr[j] >= arr[j - 1])
            j++;
        int x = Math.max(0, j - i - k + 1);
  
        // Update ret
        ret += (x * (x + 1)) / 2;
  
        // Update i
        i = j;
    }
  
    // Return ret
    return ret;
}
  
// Driver code
public static void main(String []args)
{
    int arr[] = { 5, 4, 3, 2, 1 };
    int n = arr.length;
    int k = 2;
  
    System.out.println(findCnt(arr, n, k));
}
}
  
// This code is contributed by Rajput-Ji
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
  
# Function to return the required count 
def findCnt(arr, n, k) :
  
    # To store the final result 
    ret = 0
  
    # Two pointer loop 
    i = 0
    while (i < n) :
  
        # Initialising j 
        j = i + 1
  
        # Looping till the subarray increases 
        while (j < n and arr[j] >= arr[j - 1]) :
            j += 1
              
        x = max(0, j - i - k); 
  
        # Update ret 
        ret += (x * (x + 1)) / 2
  
        # Update i 
        i = j; 
  
    # Return ret 
    return ret; 
  
# Driver code 
if __name__ == "__main__"
  
    arr = [ 5, 4, 3, 2, 1 ]; 
    n = len(arr); 
    k = 2
  
    print(findCnt(arr, n, k)); 
  
# This code is contributed by AnkitRai01
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
  
class GFG
{
  
// Function to return the required count
static int findCnt(int []arr, int n, int k)
{
    // To store the final result
    int ret = 0;
  
    // Two pointer loop
    int i = 0;
    while (i < n) 
    {
  
        // Initialising j
        int j = i + 1;
  
        // Looping till the subarray increases
        while (j < n && arr[j] >= arr[j - 1])
            j++;
        int x = Math.Max(0, j - i - k + 1);
  
        // Update ret
        ret += (x * (x + 1)) / 2;
  
        // Update i
        i = j;
    }
  
    // Return ret
    return ret;
}
  
// Driver code
public static void Main(String []args)
{
    int []arr = { 5, 4, 3, 2, 1 };
    int n = arr.Length;
    int k = 2;
  
    Console.WriteLine(findCnt(arr, n, k));
}
}
  
// This code is contributed by PrinciRaj1992
chevron_right

Output:
0

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




Article Tags :