Skip to content
Related Articles

Related Articles

Improve Article

Number of n digit stepping numbers | Space optimized solution

  • Last Updated : 22 Apr, 2021

Given n, find the count of n digit Stepping numbers. A number is called a stepping number if all adjacent digits have an absolute difference of 1. 321 is a Stepping Number while 421 is not.
Examples: 
 

Input : 2
Output : 17
The numbers are 10, 12, 21, 
23, 32, 34, 43, 45, 54, 56, 65, 67, 76, 
78, 87, 89, 98.

Input : 1
Output : 10
The numbers are 0, 1, 2, 3, 
4, 5, 6, 7, 8, 9.

 

In the previous post, a solution that requires O(n) auxiliary space is discussed. The auxiliary space required to solve the problem can be optimized. The 2-D dp array dp[i][j] represents count of stepping number of length i and last digit j. For a digit j the count is obtained from digit j – 1 and j + 1. The recurrence relation is dp[i][j] = dp[i-1][j-1] + dp[i-1][j+1] . Observe that the answer for current length i depends only on i – 1. So a 1-D dp array can be used in which for a given i, dp[j] stores count of stepping numbers of length i ending with digit j. Before updating dp array for a given length i, store the result for length i – 1 in another array prev, then update dp array using prev array.
Below is the implementation of above approach: 
 

C++




// CPP program to calculate the number of
// n digit stepping numbers.
#include <bits/stdc++.h>
using namespace std;
 
// function that calculates the answer
long long answer(int n)
{
    // dp[j] stores count of i digit
    // stepping numbers ending with digit
    // j.
    int dp[10];
 
    // To store result of length i - 1
    // before updating dp[j] for length i.
    int prev[10];
 
    // if n is 1 then answer will be 10.
    if (n == 1)
        return 10;
 
    // Initialize values for count of
    // digits equal to 1.
    for (int j = 0; j <= 9; j++)
        dp[j] = 1;
 
    // Compute values for count of digits
    // more than 1.
    for (int i = 2; i <= n; i++) {
        for (int j = 0; j <= 9; j++) {
            prev[j] = dp[j];
        }
 
        for (int j = 0; j <= 9; j++) {
 
            // If ending digit is 0
            if (j == 0)
                dp[j] = prev[j + 1];
 
            // If ending digit is 9
            else if (j == 9)
                dp[j] = prev[j - 1];
 
            // For other digits.
            else
                dp[j] = prev[j - 1] + prev[j + 1];
        }
    }
 
    // stores the final answer
    long long sum = 0;
    for (int j = 1; j <= 9; j++)
        sum += dp[j];
    return sum;
}
 
// driver program to test the above function
int main()
{
    int n = 2;
    cout << answer(n);
    return 0;
}

Java




// Java program to calculate the number of
// n digit stepping numbers.
class GFG
{
     
// function that calculates the answer
static long answer(int n)
{
    // dp[j] stores count of i digit
    // stepping numbers ending with digit
    // j.
    int[] dp = new int[10];
 
    // To store result of length i - 1
    // before updating dp[j] for length i.
    int[] prev = new int[10];
 
    // if n is 1 then answer will be 10.
    if (n == 1)
        return 10;
 
    // Initialize values for count of
    // digits equal to 1.
    for (int j = 0; j <= 9; j++)
        dp[j] = 1;
 
    // Compute values for count of digits
    // more than 1.
    for (int i = 2; i <= n; i++)
    {
        for (int j = 0; j <= 9; j++)
        {
            prev[j] = dp[j];
        }
 
        for (int j = 0; j <= 9; j++)
        {
 
            // If ending digit is 0
            if (j == 0)
                dp[j] = prev[j + 1];
 
            // If ending digit is 9
            else if (j == 9)
                dp[j] = prev[j - 1];
 
            // For other digits.
            else
                dp[j] = prev[j - 1] + prev[j + 1];
        }
    }
 
    // stores the final answer
    long sum = 0;
    for (int j = 1; j <= 9; j++)
        sum += dp[j];
    return sum;
}
 
// Driver code
public static void main (String[] args)
{
    int n = 2;
    System.out.println(answer(n));
}
}
 
// This code is contributed by mits

Python3




# Python3 program to calculate the number of
# n digit stepping numbers.
 
# function that calculates the answer
def answer(n) :
 
    # dp[j] stores count of i digit
    # stepping numbers ending with digit j.
    dp = [0] * 10
 
    # To store resu1lt of length i - 1
    # before updating dp[j] for length i.
    prev = [0] * 10
 
    # if n is 1 then answer will be 10.
    if (n == 1):
        return 10
 
    # Initialize values for count of
    # digits equal to 1.
    for j in range(0, 10) :
        dp[j] = 1
 
    # Compute values for count of digits
    # more than 1.
    for i in range(2, n + 1):
        for j in range (0, 10):
            prev[j] = dp[j]
 
        for j in range (0, 10):
         
            # If ending digit is 0
            if (j == 0):
                dp[j] = prev[j + 1]
 
            # If ending digit is 9
            elif (j == 9) :
                dp[j] = prev[j - 1]
 
            # For other digits.
            else :
                dp[j] = prev[j - 1] + prev[j + 1]
         
    # stores the final answer
    sum = 0
    for j in range (1, 10):
        sum = sum + dp[j]
    return sum
 
# Driver Code
n = 2
print(answer(n))
 
# This code is contributed by ihritik

C#




// C# program to calculate the number of
// n digit stepping numbers.
using System;
 
class GFG
{
     
// function that calculates the answer
static long answer(int n)
{
    // dp[j] stores count of i digit
    // stepping numbers ending with digit
    // j.
    int[] dp = new int[10];
 
    // To store result of length i - 1
    // before updating dp[j] for length i.
    int[] prev = new int[10];
 
    // if n is 1 then answer will be 10.
    if (n == 1)
        return 10;
 
    // Initialize values for count of
    // digits equal to 1.
    for (int j = 0; j <= 9; j++)
        dp[j] = 1;
 
    // Compute values for count of digits
    // more than 1.
    for (int i = 2; i <= n; i++)
    {
        for (int j = 0; j <= 9; j++)
        {
            prev[j] = dp[j];
        }
 
        for (int j = 0; j <= 9; j++)
        {
 
            // If ending digit is 0
            if (j == 0)
                dp[j] = prev[j + 1];
 
            // If ending digit is 9
            else if (j == 9)
                dp[j] = prev[j - 1];
 
            // For other digits.
            else
                dp[j] = prev[j - 1] + prev[j + 1];
        }
    }
 
    // stores the final answer
    long sum = 0;
    for (int j = 1; j <= 9; j++)
        sum += dp[j];
    return sum;
}
 
// Driver code
static void Main()
{
    int n = 2;
    Console.WriteLine(answer(n));
}
}
 
// This code is contributed by mits

PHP




<?php
// PHP program to calculate the number of
// n digit stepping numbers.
 
// function that calculates the answer
function answer($n)
{
    // dp[j] stores count of i digit
    // stepping numbers ending with digit
    // j.
    $dp = array_fill(0, 10, 0);
 
    // To store result of length i - 1
    // before updating dp[j] for length i.
    $prev = array_fill(0, 10, 0);;
 
    // if n is 1 then answer will be 10.
    if ($n == 1)
        return 10;
 
    // Initialize values for count of
    // digits equal to 1.
    for ($j = 0; $j <= 9; $j++)
        $dp[$j] = 1;
 
    // Compute values for count of digits
    // more than 1.
    for ($i = 2; $i <= $n; $i++)
    {
        for ($j = 0; $j <= 9; $j++)
        {
            $prev[$j] = $dp[$j];
        }
 
        for ($j = 0; $j <= 9; $j++)
        {
 
            // If ending digit is 0
            if ($j == 0)
                $dp[$j] = $prev[$j + 1];
 
            // If ending digit is 9
            else if ($j == 9)
                $dp[$j] = $prev[$j - 1];
 
            // For other digits.
            else
                $dp[$j] = $prev[$j - 1] + $prev[$j + 1];
        }
    }
 
    // stores the final answer
    $sum = 0;
    for ($j = 1; $j <= 9; $j++)
        $sum += $dp[$j];
    return $sum;
}
 
    // Driver program to test the above function
    $n = 2;
    echo answer($n);
 
// This code is contributed by mits
?>

Javascript




<script>
 
 
// Javascript program to calculate the number of
// n digit stepping numbers.
 
// function that calculates the answer
function answer(n)
{
    // dp[j] stores count of i digit
    // stepping numbers ending with digit
    // j.
    var dp = Array(10);
 
    // To store result of length i - 1
    // before updating dp[j] for length i.
    var prev = Array(10);
 
    // if n is 1 then answer will be 10.
    if (n == 1)
        return 10;
 
    // Initialize values for count of
    // digits equal to 1.
    for (var j = 0; j <= 9; j++)
        dp[j] = 1;
 
    // Compute values for count of digits
    // more than 1.
    for (var i = 2; i <= n; i++) {
        for (var j = 0; j <= 9; j++) {
            prev[j] = dp[j];
        }
 
        for (var j = 0; j <= 9; j++) {
 
            // If ending digit is 0
            if (j == 0)
                dp[j] = prev[j + 1];
 
            // If ending digit is 9
            else if (j == 9)
                dp[j] = prev[j - 1];
 
            // For other digits.
            else
                dp[j] = prev[j - 1] + prev[j + 1];
        }
    }
 
    // stores the final answer
    var sum = 0;
    for (var j = 1; j <= 9; j++)
        sum += dp[j];
    return sum;
}
 
// driver program to test the above function
var n = 2;
document.write( answer(n));
 
</script>
Output: 
17

 

Time Complexity: O(N) 
Auxiliary Space: O(1)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :