Open In App

Number of intersections between two ranges

Given N ranges of type1 ranges and M ranges of type2.The task is to find the total number of intersections between all possible type1 and type2 range pairs. All start and end points of type1 and type2 ranges are given.
Examples:
 

Input : N = 2, M = 2 
type1[ ] = { { 1, 3 }, { 5, 9 } } 
type2[ ] = { { 2, 8 }, { 9, 12 } } 
Output :
Range {2, 8} intersects with type1 ranges {1, 3} and {5, 9} 
Range {9, 12} intersects with {5, 9} only. 
So the total number of intersections is 3.
Input : N = 3, M = 1 
type1[ ] = { { 1, 8 }, { 5, 10 }, { 14, 28 } 
type2[ ] = { { 2, 8 } } 
Output :
 



 

Approach: 
 



Below is the implementation of above approach: 




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return total
// number of intersections
int FindIntersection(pair<int, int> type1[], int n,
                     pair<int, int> type2[], int m)
{
 
    // Maximum possible number
    // of intersections
    int ans = n * m;
 
    vector<int> start, end;
    for (int i = 0; i < n; i++) {
 
        // Store all starting
        // points of type1 ranges
        start.push_back(type1[i].first);
 
        // Store all endpoints
        // of type1 ranges
        end.push_back(type1[i].second);
    }
 
    sort(start.begin(), start.end());
    sort(end.begin(), end.end());
 
    for (int i = 0; i < m; i++) {
 
        // Starting point of type2 ranges
        int L = type2[i].first;
 
        // Ending point of type2 ranges
        int R = type2[i].second;
 
        // Subtract those ranges which
        // are starting after R
        ans -= (start.end() -
        upper_bound(start.begin(), start.end(), R));
 
        // Subtract those ranges which
        // are ending before L
        ans -=
        (upper_bound(end.begin(), end.end(), L - 1)
        - end.begin());
    }
 
    return ans;
}
 
// Driver Code
int main()
{
 
    pair<int, int> type1[] =
    { { 1, 2 }, { 2, 3 }, { 4, 5 }, { 6, 7 } };
 
    pair<int, int> type2[] =
    { { 1, 5 }, { 2, 3 }, { 4, 7 }, { 5, 7 } };
 
    int n = sizeof(type1) / (sizeof(type1[0]));
    int m = sizeof(type2) / sizeof(type2[0]);
 
    cout << FindIntersection(type1, n, type2, m);
 
    return 0;
}




// Java implementation of above approach
import java.io.*;
import java.util.*;
class GFG
{
    static int upperBound(ArrayList<Integer> a, int low,
                          int high, int element)
    {
    while (low < high)
    {
        int middle = low + (high - low) / 2;
        if (a.get(middle) > element)
        {
            high = middle;
        }
      else
      {
            low = middle + 1;
        }
    }
    return low;
    }
   
    // Function to return total
    // number of intersections
    static int FindIntersection(ArrayList<ArrayList<Integer>> type1,
                                int n, ArrayList<ArrayList<Integer>> type2, int m )
    {
       
        // Maximum possible number
        // of intersections
        int ans = n * m;
        ArrayList<Integer> start = new ArrayList<Integer>();
        ArrayList<Integer> end = new ArrayList<Integer>();
        for (int i = 0; i < n; i++)
        {
           
            // Store all starting
            // points of type1 ranges
            start.add(type1.get(i).get(0));
             
            // Store all endpoints
            // of type1 ranges
            end.add(type1.get(i).get(1));
             
        }
        Collections.sort(start);
        Collections.sort(end);
         
        for (int i = 0; i < m; i++)
        {
           
            // Starting point of type2 ranges
            int L = type2.get(i).get(0);
           
            // Ending point of type2 ranges
            int R = type2.get(i).get(1);
             
            // Subtract those ranges which
            // are starting after R
            ans -= start.size() - upperBound(start, 0, start.size(), R);
             
            // Subtract those ranges which
            // are ending before L
            ans -= upperBound(end, 0, end.size() , L - 1);
             
        }
        return ans;
    }
   
    // Driver Code
    public static void main (String[] args)
    {
        ArrayList<ArrayList<Integer>> type1 = new ArrayList<ArrayList<Integer>>();
        type1.add(new ArrayList<Integer>(Arrays.asList(1,2)));
        type1.add(new ArrayList<Integer>(Arrays.asList(2,3)));
        type1.add(new ArrayList<Integer>(Arrays.asList(4,5)));
        type1.add(new ArrayList<Integer>(Arrays.asList(6,7)));
         
        ArrayList<ArrayList<Integer>> type2 = new ArrayList<ArrayList<Integer>>();
        type2.add(new ArrayList<Integer>(Arrays.asList(1,5)));
        type2.add(new ArrayList<Integer>(Arrays.asList(2,3)));
        type2.add(new ArrayList<Integer>(Arrays.asList(4,7)));
        type2.add(new ArrayList<Integer>(Arrays.asList(5,7)));
         
        int n = type1.size();
        int m = type2.size();
         
        System.out.println(FindIntersection(type1, n, type2, m));
    }
}
 
// This code is contributed by avanitrachhadiya2155




# Python3 implementation of above approach
from bisect import bisect as upper_bound
 
# Function to return total
# number of intersections
def FindIntersection(type1, n, type2, m):
 
    # Maximum possible number
    # of intersections
    ans = n * m
 
    start = []
    end = []
    for i in range(n):
         
        # Store all starting
        # points of type1 ranges
        start.append(type1[i][0])
 
        # Store all endpoints
        # of type1 ranges
        end.append(type1[i][1])
 
    start = sorted(start)
    start = sorted(end)
 
    for i in range(m):
 
        # Starting point of type2 ranges
        L = type2[i][0]
 
        # Ending point of type2 ranges
        R = type2[i][1]
 
        # Subtract those ranges which
        # are starting after R
        ans -= (len(start)- upper_bound(start, R))
 
        # Subtract those ranges which
        # are ending before L
        ans -= (upper_bound(end, L - 1))
 
    return ans
 
# Driver Code
type1 = [ [ 1, 2 ], [ 2, 3 ],
          [ 4, 5 ], [ 6, 7 ] ]
 
type2 = [ [ 1, 5 ], [ 2, 3 ],
          [ 4, 7 ], [ 5, 7 ] ]
 
n = len(type1)
m = len(type2)
 
print(FindIntersection(type1, n, type2, m))
 
# This code is contributed by Mohit Kumar




// C# implementation of above approach
using System;
using System.Collections.Generic;
class GFG
{
  static int upperBound(List<int> a, int low,
                        int high, int element)
  {
    while (low < high)
    {
      int middle = low + (high - low) / 2;
      if (a[middle] > element)
      {
        high = middle;
      }
      else
      {
        low = middle + 1;
      }
    }
    return low;
  }
 
  // Function to return total
  // number of intersections
  static int FindIntersection(List<List<int>> type1, int n,
                              List<List<int>> type2, int m)
  {
 
    // Maximum possible number
    // of intersections
    int ans = n * m;
    List<int> start = new List<int>();
    List<int> end = new List<int>();
    for (int i = 0; i < n; i++)
    {
 
      // Store all starting
      // points of type1 ranges
      start.Add(type1[i][0]);
 
      // Store all endpoints
      // of type1 ranges
      end.Add(type1[i][1]);
    }
    start.Sort();
    end.Sort();
 
    for (int i = 0; i < m; i++)
    {
 
      // Starting point of type2 ranges
      int L = type2[i][0];
 
      // Ending point of type2 ranges
      int R = type2[i][1];
 
      // Subtract those ranges which
      // are starting after R
      ans -= start.Count - upperBound(start, 0, start.Count, R);
 
      // Subtract those ranges which
      // are ending before L
      ans -= upperBound(end, 0, end.Count , L - 1);
    }
    return ans;
  }
 
  // Driver Code
  static public void Main ()
  {
    List<List<int>> type1 = new List<List<int>>();
    type1.Add(new List<int>(){1,2});
    type1.Add(new List<int>(){2,3});
    type1.Add(new List<int>(){4,5});
    type1.Add(new List<int>(){6,7});
 
    List<List<int>> type2 = new List<List<int>>();
    type2.Add(new List<int>(){1,5});
    type2.Add(new List<int>(){2,3});
    type2.Add(new List<int>(){4,7});
    type2.Add(new List<int>(){5,7});       
    int n = type1.Count;
    int m = type2.Count;
    Console.WriteLine(FindIntersection(type1, n, type2, m));       
  }
}
 
// This code is contributed by rag2127




<script>
// Javascript implementation of above approach
 
function upperBound(a,low,high,element)
{
    while (low < high)
    {
        let middle = low + Math.floor((high - low) / 2);
        if (a[middle] > element)
        {
            high = middle;
        }
      else
      {
            low = middle + 1;
        }
    }
    return low;
}
 
// Function to return total
    // number of intersections
function FindIntersection(type1,n,type2,m)
{
    // Maximum possible number
        // of intersections
        let ans = n * m;
        let start = [];
        let end = [];
        for (let i = 0; i < n; i++)
        {
            
            // Store all starting
            // points of type1 ranges
            start.push(type1[i][0]);
              
            // Store all endpoints
            // of type1 ranges
            end.push(type1[i][1]);
              
        }
        start.sort(function(a,b){return a-b;});
        end.sort(function(a,b){return a-b;});
          
        for (let i = 0; i < m; i++)
        {
            
            // Starting point of type2 ranges
            let L = type2[i][0];
            
            // Ending point of type2 ranges
            let R = type2[i][1];
              
            // Subtract those ranges which
            // are starting after R
            ans -= start.length - upperBound(start, 0, start.length, R);
              
            // Subtract those ranges which
            // are ending before L
            ans -= upperBound(end, 0, end.length , L - 1);
              
        }
        return ans;
}
 
 // Driver Code
let type1 = [ [ 1, 2 ], [ 2, 3 ],
          [ 4, 5 ], [ 6, 7 ] ];
           
let type2 = [ [ 1, 5 ], [ 2, 3 ],
          [ 4, 7 ], [ 5, 7 ] ];
 
let n = type1.length;
let m = type2.length;
 
document.write(FindIntersection(type1, n, type2, m));
 
// This code is contributed by patel2127
</script>

Output: 
9

 

Time Complexity: O(M*log(N))

Auxiliary Space: O(N)
 


Article Tags :