Given two integer arrays A[] and B[] of equal sizes, the task is to find the number of pairs of indices {i, j} in the arrays such that A[i] + A[j] > B[i] + B[j] and i < j.
Examples:
Input: A[] = {4, 8, 2, 6, 2}, B[] = {4, 5, 4, 1, 3}
Output: 7
Explanation:
There are a total of 7 pairs of indices {i, j} in the array following the condition. They are:
{0, 1}: A[0] + A[1] > B[0] + B[1]
{0, 3}: A[0] + A[3] > B[0] + B[3]
{1, 2}: A[1] + A[2] > B[1] + B[2]
{1, 3}: A[1] + A[3] > B[1] + B[3]
{1, 4}: A[1] + A[4] > B[1] + B[4]
{2, 3}: A[2] + A[3] > B[2] + B[3]
{3, 4}: A[3] + A[4] > B[3] + B[4]Input: A[] = {1, 3, 2, 4}, B[] = {1, 3, 2, 4}
Output: 0
Explanation:
No such possible pairs of {i, j} can be found that satisfies the given condition
Naive Approach: The naive approach is to consider all the possible pairs of {i, j} in the given arrays and check if A[i] + A[j] > B[i] + B[j]. This can be done by using the concept of nested loops.
Time Complexity: O(N2)
Efficient Approach: The key observation from the problem is that the given condition can also be visualised as (ai-bi) + (aj-bj)> 0 so we can make another array to store the difference of both arrays. let this array be D . Therefore, the problem reduces to finding pairs with Di+Dj>0. Now we can sort D array and for each corresponding element Di we will find the no of good pairs that Di can make and add this no of pairs to a count variable.For each element Di to find the no of good pairs it can make we can use the upper_bound function of the standard template library to find the upper bound of -Di. since the array is sorted so all elements present after -Di will also make good pair with Di .thus,if upper bound of -Di is x and n be the total size of array then total pairs corresponding to Di will be n-x. This approach takes O(NlogN) time.
- The given condition in the question can be rewritten as:
A[i] + A[j] > B[i] + B[j] A[i] + A[j] - B[i] - B[j] > 0 (A[i] - B[i]) + (A[j] - B[j]) > 0
- Create another array, say D, to store the difference between elements at the corresponding index in both array, i.e.
D[i] = A[i] - B[i]
- Now to make sure that the constraint i < j is satisfied, sort the difference array D, so that each element i is smaller than elements to its right.
- If at some index i, the value in the difference array D is negative, then we only need to find the nearest position ‘j’ at which the value is just greater than -D[i], so that on summation the value becomes > 0.
Inorder to find such index ‘j’, upper_bound() function or Binary Search can be used, since the array is sorted.
Below is the implementation of the above approach:
// C++ program to find the number of indices pair // such that pair sum from first Array // is greater than second Array #include <bits/stdc++.h> using namespace std;
// Function to get the number of pairs of indices // {i, j} in the given two arrays A and B such that // A[i] + A[j] > B[i] + B[j] int getPairs(vector< int > A, vector< int > B, int n)
{ // Intitializing the difference array D
vector< int > D(n);
// Computing the difference between the
// elements at every index and storing
// it in the array D
for ( int i = 0; i < n; i++) {
D[i] = A[i] - B[i];
}
// Sort the array D
sort(D.begin(), D.end());
// Variable to store the total
// number of pairs that satisfy
// the given condition
long long total = 0;
// Loop to iterate through the difference
// array D and find the total number
// of pairs of indices that follow the
// given condition
for ( int i = n - 1; i >= 0; i--) {
// If the value at the index i is positive,
// then it remains positive for any pairs
// with j such that j > i.
if (D[i] > 0) {
total += n - i - 1;
}
// If the value at that index is negative
// then we need to find the index of the
// value just greater than -D[i]
else {
int k = upper_bound(D.begin(),
D.end(), -D[i])
- D.begin();
total += n - k;
}
}
return total;
} // Driver code int main()
{ int n = 5;
vector< int > A;
vector< int > B;
A.push_back(4);
A.push_back(8);
A.push_back(2);
A.push_back(6);
A.push_back(2);
B.push_back(4);
B.push_back(5);
B.push_back(4);
B.push_back(1);
B.push_back(3);
cout << getPairs(A, B, n);
} |
// Java program to find the number of indices pair // such that pair sum from first Array // is greater than second Array import java.util.*;
class GFG{
// Function to get the number of pairs of indices // {i, j} in the given two arrays A and B such that // A[i] + A[j] > B[i] + B[j] static long getPairs(Vector<Integer> A, Vector<Integer> B, int n)
{ // Intitializing the difference array D
int []D = new int [n];
// Computing the difference between the
// elements at every index and storing
// it in the array D
for ( int i = 0 ; i < n; i++)
{
D[i] = A.get(i) - B.get(i);
}
// Sort the array D
Arrays.sort(D);
// Variable to store the total
// number of pairs that satisfy
// the given condition
long total = 0 ;
// Loop to iterate through the difference
// array D and find the total number
// of pairs of indices that follow the
// given condition
for ( int i = n - 1 ; i >= 0 ; i--) {
// If the value at the index i is positive,
// then it remains positive for any pairs
// with j such that j > i.
if (D[i] > 0 ) {
total += n - i - 1 ;
}
// If the value at that index is negative
// then we need to find the index of the
// value just greater than -D[i]
else {
int k = upper_bound(D, 0 , D.length, -D[i]);
total += n - k;
}
}
return total;
} static int upper_bound( int [] a, int low,
int high, int element)
{ while (low < high){
int middle = low + (high - low)/ 2 ;
if (a[middle] > element)
high = middle;
else
low = middle + 1 ;
}
return low;
} // Driver code public static void main(String[] args)
{ int n = 5 ;
Vector<Integer> A = new Vector<Integer>();
Vector<Integer> B= new Vector<Integer>();
A.add( 4 );
A.add( 8 );
A.add( 2 );
A.add( 6 );
A.add( 2 );
B.add( 4 );
B.add( 5 );
B.add( 4 );
B.add( 1 );
B.add( 3 );
System.out.print(getPairs(A, B, n));
} } // This code is contributed by 29AjayKumar |
# Python 3 program to find the number of indices pair # such that pair sum from first Array # is greater than second Array import bisect
# Function to get the number of pairs of indices # {i, j} in the given two arrays A and B such that # A[i] + A[j] > B[i] + B[j] def getPairs(A, B, n):
# Intitializing the difference array D
D = [ 0 ] * (n)
# Computing the difference between the
# elements at every index and storing
# it in the array D
for i in range (n):
D[i] = A[i] - B[i]
# Sort the array D
D.sort()
# Variable to store the total
# number of pairs that satisfy
# the given condition
total = 0
# Loop to iterate through the difference
# array D and find the total number
# of pairs of indices that follow the
# given condition
for i in range (n - 1 , - 1 , - 1 ):
# If the value at the index i is positive,
# then it remains positive for any pairs
# with j such that j > i.
if (D[i] > 0 ):
total + = n - i - 1
# If the value at that index is negative
# then we need to find the index of the
# value just greater than -D[i]
else :
k = bisect.bisect_right(D, - D[i], 0 , len (D))
total + = n - k
return total
# Driver code if __name__ = = "__main__" :
n = 5
A = []
B = []
A.append( 4 );
A.append( 8 );
A.append( 2 );
A.append( 6 );
A.append( 2 );
B.append( 4 );
B.append( 5 );
B.append( 4 );
B.append( 1 );
B.append( 3 );
print (getPairs(A, B, n))
# This code is contributed by chitranayal |
// C# program to find the number of indices pair // such that pair sum from first Array // is greater than second Array using System;
using System.Collections.Generic;
class GFG{
// Function to get the number of pairs of indices // {i, j} in the given two arrays A and B such that // A[i] + A[j] > B[i] + B[j] static long getPairs(List< int > A, List< int > B, int n)
{ // Intitializing the difference array D
int []D = new int [n];
// Computing the difference between the
// elements at every index and storing
// it in the array D
for ( int i = 0; i < n; i++)
{
D[i] = A[i] - B[i];
}
// Sort the array D
Array.Sort(D);
// Variable to store the total
// number of pairs that satisfy
// the given condition
long total = 0;
// Loop to iterate through the difference
// array D and find the total number
// of pairs of indices that follow the
// given condition
for ( int i = n - 1; i >= 0; i--) {
// If the value at the index i is positive,
// then it remains positive for any pairs
// with j such that j > i.
if (D[i] > 0) {
total += n - i - 1;
}
// If the value at that index is negative
// then we need to find the index of the
// value just greater than -D[i]
else {
int k = upper_bound(D,0, D.Length, -D[i]);
total += n - k;
}
}
return total;
} static int upper_bound( int [] a, int low,
int high, int element)
{ while (low < high){
int middle = low + (high - low)/2;
if (a[middle] > element)
high = middle;
else
low = middle + 1;
}
return low;
} // Driver code public static void Main(String[] args)
{ int n = 5;
List< int > A = new List< int >();
List< int > B= new List< int >();
A.Add(4);
A.Add(8);
A.Add(2);
A.Add(6);
A.Add(2);
B.Add(4);
B.Add(5);
B.Add(4);
B.Add(1);
B.Add(3);
Console.Write(getPairs(A, B, n));
} } // This code is contributed by sapnasingh4991 |
7
Time Complexity Analysis:
- The sorting of the array takes O(N * log(N)) time.
- The time taken to find the index which is just greater than a specific value is O(Log(N)). Since in the worst case, this can be executed for N elements in the array, the overall time complexity for this is O(N * log(N)).
- Therefore, the overall time complexity is O(N * log(N)).
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.