# Number of factors of very large number N modulo M where M is any prime number

Given a large number N, the task is to find the total number of factors of the number N modulo M where M is any prime number.

Examples:

Input: N = 9699690, M = 17
Output: 1
Explanation:
Total Number of factors of 9699690 is 256 and (256 % 17) = 1

Input: N = 193748576239475639, M = 9
Output: 8
Explanation:
Total Number of factors of 9699690 is 256 and (256 % 17) = 1

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Definition of Factors of a number:
In mathematics, a factor of an integer N also called a divisor of N, is an integer M that may be multiplied by some integer to produce N.

Any number can be written as:

N = (P1A1) * (P2A2) * (P3A3) …. (PnAn)

where P1, P2, P3…Pn are distinct prime and A1, A2, A3…An are number of times the corresponding prime number occurs.

The general formula of total number of factors of a given number will be:

Factors = (1+A1) * (1+A2) * (1+A3) * … (1+An)

where A1, A2, A3, … An are count of distinct prime factors of N.

Here Sieve’s implementation to find prime factorization of a large number cannot be used because it requires proportional space.

Approach:

1. Count the number of times 2 is the factor of the given number N.
2. Iterate from 3 to √(N) to find the number of times a prime number divides a particular number which reduces every time by N / i.
3. Divide number N by its corresponding smallest prime factor till N becomes 1.
4. Find the number of factors of the number by using the formula

Factors = (1+A1) * (1+A2) * (1+A3) * … (1+An)

Below is the implementation of the above approach.

## C++

 `// C++ implementation to find the ` `// Number of factors of very ` `// large number N modulo M ` ` `  `#include ` `using` `namespace` `std; ` ` `  `#define ll long long ` `ll mod = 1000000007; ` ` `  `// Function for modular ` `// multiplication ` `ll mult(ll a, ll b) ` `{ ` `    ``return` `((a % mod) *  ` `        ``(b % mod)) % mod; ` `} ` ` `  `// Function to find the number ` `// of factors of large Number N ` `ll calculate_factors(ll n) ` `{ ` `    ``ll ans, cnt; ` `    ``cnt = 0; ` `    ``ans = 1; ` `     `  `    ``// Count the number of times ` `    ``// 2 divides the number N ` `    ``while` `(n % 2 == 0) { ` `        ``cnt++; ` `        ``n = n / 2; ` `    ``} ` `     `  `    ``// Condition to check  ` `    ``// if 2 divides it ` `    ``if` `(cnt) { ` `        ``ans = mult(ans, (cnt + 1)); ` `    ``} ` `     `  `    ``// Check for all the possible ` `    ``// numbers that can divide it ` `    ``for` `(``int` `i = 3; i <= ``sqrt``(n); ` `                         ``i += 2) { ` `        ``cnt = 0; ` `         `  `        ``// Loop to check the number ` `        ``// of times prime number ` `        ``// i divides it ` `        ``while` `(n % i == 0) { ` `            ``cnt++; ` `            ``n = n / i; ` `        ``} ` `         `  `        ``// Condition to check if ` `        ``// prime number i divides it ` `        ``if` `(cnt) { ` `            ``ans = mult(ans, (cnt + 1)); ` `        ``} ` `    ``} ` `    ``// Condition to check if N ` `    ``// at the end is a prime number. ` `    ``if` `(n > 2) { ` `        ``ans = mult(ans, (2)); ` `    ``} ` `    ``return` `ans % mod; ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``ll n = 193748576239475639; ` `    ``mod = 17; ` ` `  `    ``cout << calculate_factors(n) << endl; ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation to find the ` `// Number of factors of very ` `// large number N modulo M ` `class` `GFG{ ` `  `  `static` `long`  `mod = 1000000007L; ` `  `  `// Function for modular ` `// multiplication ` `static` `long`  `mult(``long`  `a, ``long`  `b) ` `{ ` `    ``return` `((a % mod) *  ` `        ``(b % mod)) % mod; ` `} ` `  `  `// Function to find the number ` `// of factors of large Number N ` `static` `long`  `calculate_factors(``long`  `n) ` `{ ` `    ``long`  `ans, cnt; ` `    ``cnt = ``0``; ` `    ``ans = ``1``; ` `      `  `    ``// Count the number of times ` `    ``// 2 divides the number N ` `    ``while` `(n % ``2` `== ``0``) { ` `        ``cnt++; ` `        ``n = n / ``2``; ` `    ``} ` `      `  `    ``// Condition to check  ` `    ``// if 2 divides it ` `    ``if` `(cnt % ``2` `== ``1``) { ` `        ``ans = mult(ans, (cnt + ``1``)); ` `    ``} ` `      `  `    ``// Check for all the possible ` `    ``// numbers that can divide it ` `    ``for` `(``int` `i = ``3``; i <= Math.sqrt(n); ` `                         ``i += ``2``) { ` `        ``cnt = ``0``; ` `          `  `        ``// Loop to check the number ` `        ``// of times prime number ` `        ``// i divides it ` `        ``while` `(n % i == ``0``) { ` `            ``cnt++; ` `            ``n = n / i; ` `        ``} ` `          `  `        ``// Condition to check if ` `        ``// prime number i divides it ` `        ``if` `(cnt % ``2` `== ``1``) { ` `            ``ans = mult(ans, (cnt + ``1``)); ` `        ``} ` `    ``} ` `    ``// Condition to check if N ` `    ``// at the end is a prime number. ` `    ``if` `(n > ``2``) { ` `        ``ans = mult(ans, (``2``)); ` `    ``} ` `    ``return` `ans % mod; ` `} ` `  `  `// Driver Code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``long`  `n = 193748576239475639L; ` `    ``mod = ``17``; ` `  `  `    ``System.out.print(calculate_factors(n) +``"\n"``); ` `} ` `} ` ` `  `// This code is contributed by sapnasingh4991 `

## Python 3

 `# Python 3 implementation to find the ` `# Number of factors of very ` `# large number N modulo M ` `from` `math ``import` `sqrt ` ` `  `mod ``=` `1000000007` ` `  `# Function for modular ` `# multiplication ` `def` `mult(a, b): ` `    ``return` `((a ``%` `mod) ``*` `(b ``%` `mod)) ``%` `mod ` ` `  `# Function to find the number ` `# of factors of large Number N ` `def` `calculate_factors(n): ` `    ``cnt ``=` `0` `    ``ans ``=` `1` `     `  `    ``# Count the number of times ` `    ``# 2 divides the number N ` `    ``while` `(n ``%` `2` `=``=` `0``): ` `        ``cnt ``+``=` `1` `        ``n ``=` `n ``/``/` `2` `     `  `    ``# Condition to check  ` `    ``# if 2 divides it ` `    ``if` `(cnt): ` `        ``ans ``=` `mult(ans, (cnt ``+` `1``)) ` `     `  `    ``# Check for all the possible ` `    ``# numbers that can divide it ` `    ``for` `i ``in` `range``(``3``, ``int``(sqrt(n)), ``2``): ` `        ``cnt ``=` `0` `         `  `        ``# Loop to check the number ` `        ``# of times prime number ` `        ``# i divides it ` `        ``while` `(n ``%` `i ``=``=` `0``): ` `            ``cnt ``+``=` `1` `            ``n ``=` `n ``/``/` `i ` `         `  `        ``# Condition to check if ` `        ``# prime number i divides it ` `        ``if` `(cnt): ` `            ``ans ``=` `mult(ans, (cnt ``+` `1``)) ` ` `  `    ``# Condition to check if N ` `    ``# at the end is a prime number. ` `    ``if` `(n > ``2``): ` `        ``ans ``=` `mult(ans, ``2``) ` `    ``return` `ans ``%` `mod ` ` `  `# Driver Code ` `if` `__name__ ``=``=` `'__main__'``: ` `    ``n ``=` `19374857` `    ``mod ``=` `17` ` `  `    ``print``(calculate_factors(n)) ` ` `  `# This code is contributed by Surendra_Gangwar `

## C#

 `// C# implementation to find the ` `// Number of factors of very ` `// large number N modulo M ` `using` `System; ` ` `  `class` `GFG{ ` `   `  `static` `long`  `mod = 1000000007L; ` `   `  `// Function for modular ` `// multiplication ` `static` `long`  `mult(``long`  `a, ``long`  `b) ` `{ ` `    ``return` `((a % mod) *  ` `        ``(b % mod)) % mod; ` `} ` `   `  `// Function to find the number ` `// of factors of large Number N ` `static` `long`  `calculate_factors(``long`  `n) ` `{ ` `    ``long`  `ans, cnt; ` `    ``cnt = 0; ` `    ``ans = 1; ` `       `  `    ``// Count the number of times ` `    ``// 2 divides the number N ` `    ``while` `(n % 2 == 0) { ` `        ``cnt++; ` `        ``n = n / 2; ` `    ``} ` `       `  `    ``// Condition to check  ` `    ``// if 2 divides it ` `    ``if` `(cnt % 2 == 1) { ` `        ``ans = mult(ans, (cnt + 1)); ` `    ``} ` `       `  `    ``// Check for all the possible ` `    ``// numbers that can divide it ` `    ``for` `(``int` `i = 3; i <= Math.Sqrt(n); ` `                         ``i += 2) { ` `        ``cnt = 0; ` `           `  `        ``// Loop to check the number ` `        ``// of times prime number ` `        ``// i divides it ` `        ``while` `(n % i == 0) { ` `            ``cnt++; ` `            ``n = n / i; ` `        ``} ` `           `  `        ``// Condition to check if ` `        ``// prime number i divides it ` `        ``if` `(cnt % 2 == 1) { ` `            ``ans = mult(ans, (cnt + 1)); ` `        ``} ` `    ``} ` ` `  `    ``// Condition to check if N ` `    ``// at the end is a prime number. ` `    ``if` `(n > 2) { ` `        ``ans = mult(ans, (2)); ` `    ``} ` `    ``return` `ans % mod; ` `} ` `   `  `// Driver Code ` `public` `static` `void` `Main(String[] args) ` `{ ` `    ``long`  `n = 193748576239475639L; ` `    ``mod = 17; ` `   `  `    ``Console.Write(calculate_factors(n) +``"\n"``); ` `} ` `} ` ` `  `// This code is contributed by sapnasingh4991 `

Output:

```8
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Do your best to show the world what you are capable of

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.