Number of edges in mirror image of Complete binary tree

Given a complete binary tree of depth H. If the mirror image from the left and the right side of this tree is taken then:

Right Mirrored Image: Rightmost node of the every level is connected to mirrored corresponding node.
Left Mirrored Image: Left most node of the every level is connected to mirrored corresponding node.

The task is to find the number of edges after taking both the mirror images in the final tree.



Examples:

Input: H = 1
Output: 10
2 edges in the original tree will get mirrored in the mirror images (left and right) i.e. 6 edges in total.
And the edges connecting the mirror images with the original tree as shown in the image above.

Input: H = 2
Output: 24
(6 * 3) + 3 + 3 = 24

Approach: Maintain the leftmost, rightmost nodes after each mirror image. Number of edges will change after each operation of mirror image. Initially,

     $$    No.\hspace{1mm} of\hspace{1mm} nodes = 2^{(H+1)}-1 $$ $$ No.\hspace{1mm} Of\hspace{1mm} edges = 2\times(2^{H}-1}) $$ $$ No.\hspace{1mm} of\hspace{1mm} Left\hspace{1mm} side\hspace{1mm} nodes = H+1 $$ $$ No.\hspace{1mm} of\hspace{1mm} Right\hspace{1mm} side\hspace{1mm} nodes = H+1 $$

After right mirrored image:

     $$  No.\hspace{1mm} Of\hspace{1mm} edges = (Initial\hspace{1mm}edges\times 2+rightmost \hspace{1mm}nodes) $$

After left mirrored image:

     $$  No.\hspace{1mm} Of\hspace{1mm} edges = (Initial\hspace{1mm}edges\times 2+leftmost \hspace{1mm}nodes) $$

In complete modified tree:

     $$  No.\hspace{1mm} Of\hspace{1mm} edges = (Initial\hspace{1mm}edges\times 3+leftmost \hspace{1mm}nodes+rightmost \hspace{1mm}nodes) $$

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the total number
// of edges in the modified tree
int countEdges(int H)
{
  
    int edges, right, left;
    edges = 2 * (pow(2, H) - 1);
    left = right = H + 1;
  
    // Total edges in the modified tree
    int cnt = (edges * 3) + left + right;
    return cnt;
}
  
// Driver code
int main()
{
    int H = 1;
  
    cout << countEdges(H);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.io.*;
  
class GFG {
  
    // Function to return the total number
    // of edges in the modified tree
    static int countEdges(int H)
    {
  
        int edges, right, left;
        edges = 2 * (int)(Math.pow(2, H) - 1);
        left = right = H + 1;
  
        // Total edges in the modified tree
        int cnt = (edges * 3) + left + right;
        return cnt;
    }
  
    // Driver code
    public static void main(String[] args)
    {
        int H = 1;
        System.out.println(countEdges(H));
    }
}
  
// This code has been contributed by anuj_67..

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 implementation of the approach
  
# Function to return the total number
# of edges in the modified tree
def countEdges( H):
  
    edges = 2 * (pow(2, H) - 1)
    left = right = H + 1
  
    # Total edges in the modified tree
    cnt = (edges * 3) + left + right
    return cnt
  
# Driver code
if __name__ == "__main__":
    H = 1;
  
    print(countEdges(H))
  
# This code is contributed by ChitraNayal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach 
using System;
  
class GFG 
  
    // Function to return the total number 
    // of edges in the modified tree 
    static int countEdges(int H) 
    
  
        int edges, right, left; 
          
        edges = 2 * (int)(Math.Pow(2, H) - 1); 
        left = right = H + 1; 
  
        // Total edges in the modified tree 
        int cnt = (edges * 3) + left + right; 
        return cnt; 
    
  
    // Driver code 
    public static void Main() 
    
        int H = 1; 
        Console.WriteLine(countEdges(H)); 
    
  
  
// This code is contributed by AnkitRai01 

chevron_right


Output:

10


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : vt_m, AnkitRai01, chitranayal