Skip to content
Related Articles

Related Articles

Number of Binary Search Trees of height H consisting of H+1 nodes
  • Last Updated : 08 Apr, 2021

Given a positive integer H, the task is to find the number of possible Binary Search Trees of height H consisting of the first (H + 1) natural numbers as the node values. Since the count can be very large, print it to modulo 109 + 7.

Examples:

Input: H = 2
Output: 4
Explanation: All possible BSTs of height 2 consisting of 3 nodes are as follows:

Therefore, the total number of BSTs possible is 4.



Input: H = 6
Output: 64

 

Approach: The given problem can be solved based on the following observations: 

  • Only (H + 1) nodes are can be used to form a Binary Tree of height H.
  • Except for the root node, every node has two possibilities, i.e. either to be the left child or to be the right child.
  • Considering T(H) to be the number of BST of height H, where T(0) = 1 and T(H) = 2 * T(H – 1).
  • Solving the above recurrence relation, the value of T(H) is 2H.

Therefore, from the above observations, print the value of 2H as the total number of BSTs of height H consisting of the first (H + 1) natural numbers.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
const int mod = 1000000007;
 
// Function to calculate x^y
// modulo 1000000007 in O(log y)
int power(long long x, unsigned int y)
{
    // Stores the value of x^y
    int res = 1;
 
    // Update x if it exceeds mod
    x = x % mod;
 
    // If x is divisible by mod
    if (x == 0)
        return 0;
 
    while (y > 0) {
 
        // If y is odd, then
        // multiply x with result
        if (y & 1)
            res = (res * x) % mod;
 
        // Divide y by 2
        y = y >> 1;
 
        // Update the value of x
        x = (x * x) % mod;
    }
 
    // Return the value of x^y
    return res;
}
 
// Function to count the number of
// of BSTs of height H consisting
// of (H + 1) nodes
int CountBST(int H)
{
 
    return power(2, H);
}
 
// Driver Code
int main()
{
    int H = 2;
    cout << CountBST(H);
 
    return 0;
}

Java




// Java program for the above approach
class GFG{
     
static int mod = 1000000007;
 
// Function to calculate x^y
// modulo 1000000007 in O(log y)
static long power(long x, int y)
{
     
    // Stores the value of x^y
    long res = 1;
 
    // Update x if it exceeds mod
    x = x % mod;
 
    // If x is divisible by mod
    if (x == 0)
        return 0;
 
    while (y > 0)
    {
         
        // If y is odd, then
        // multiply x with result
        if ((y & 1) == 1)
            res = (res * x) % mod;
 
        // Divide y by 2
        y = y >> 1;
 
        // Update the value of x
        x = (x * x) % mod;
    }
 
    // Return the value of x^y
    return res;
}
 
// Function to count the number of
// of BSTs of height H consisting
// of (H + 1) nodes
static long CountBST(int H)
{
    return power(2, H);
}
 
// Driver code
public static void main(String[] args)
{
    int H = 2;
     
    System.out.print(CountBST(H));
}
}
 
// This code is contributed by abhinavjain194

Python3




# Python3 program for the above approach
 
# Function to calculate x^y
# modulo 1000000007 in O(log y)
def power(x, y):
     
    mod = 1000000007
     
    # Stores the value of x^y
    res = 1
 
    # Update x if it exceeds mod
    x = x % mod
 
    # If x is divisible by mod
    if (x == 0):
        return 0
         
    while (y > 0):
         
        # If y is odd, then
        # multiply x with result
        if (y & 1):
            res = (res * x) % mod
 
        # Divide y by 2
        y = y >> 1
 
        # Update the value of x
        x = (x * x) % mod
     
    # Return the value of x^y
    return res
 
# Function to count the number of
# of BSTs of height H consisting
# of (H + 1) nodes
def CountBST(H):
     
    return power(2, H)
 
# Driver Code
H = 2
 
print(CountBST(H))
 
# This code is contributed by rohitsingh07052

C#




// C# program for the above approach
using System;
 
class GFG{
     
static int mod = 1000000007;
 
// Function to calculate x^y
// modulo 1000000007 in O(log y)
static long power(long x, int y)
{
     
    // Stores the value of x^y
    long res = 1;
 
    // Update x if it exceeds mod
    x = x % mod;
 
    // If x is divisible by mod
    if (x == 0)
        return 0;
 
    while (y > 0)
    {
         
        // If y is odd, then
        // multiply x with result
        if ((y & 1) == 1)
            res = (res * x) % mod;
 
        // Divide y by 2
        y = y >> 1;
 
        // Update the value of x
        x = (x * x) % mod;
    }
 
    // Return the value of x^y
    return res;
}
 
// Function to count the number of
// of BSTs of height H consisting
// of (H + 1) nodes
static long CountBST(int H)
{
     
    return power(2, H);
}
 
// Driver code
static void Main()
{
    int H = 2;
     
    Console.Write(CountBST(H));
}
}
 
// This code is contributed by abhinavjain194
Output: 
4

 

Time Complexity: O(log2H)
Auxiliary Space: O(1)

 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :