Given a positive integer H, the task is to find the number of possible Binary Search Trees of height H consisting of the first (H + 1) natural numbers as the node values. Since the count can be very large, print it to modulo 109 + 7.
Examples:
Input: H = 2
Output: 4
Explanation: All possible BSTs of height 2 consisting of 3 nodes are as follows:

Therefore, the total number of BSTs possible is 4.
Input: H = 6
Output: 64
Approach: The given problem can be solved based on the following observations:
- Only (H + 1) nodes are can be used to form a Binary Tree of height H.
- Except for the root node, every node has two possibilities, i.e. either to be the left child or to be the right child.
- Considering T(H) to be the number of BST of height H, where T(0) = 1 and T(H) = 2 * T(H – 1).
- Solving the above recurrence relation, the value of T(H) is 2H.
Therefore, from the above observations, print the value of 2H as the total number of BSTs of height H consisting of the first (H + 1) natural numbers.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
const int mod = 1000000007;
int power( long long x, unsigned int y)
{
int res = 1;
x = x % mod;
if (x == 0)
return 0;
while (y > 0) {
if (y & 1)
res = (res * x) % mod;
y = y >> 1;
x = (x * x) % mod;
}
return res;
}
int CountBST( int H)
{
return power(2, H);
}
int main()
{
int H = 2;
cout << CountBST(H);
return 0;
}
|
Java
class GFG{
static int mod = 1000000007 ;
static long power( long x, int y)
{
long res = 1 ;
x = x % mod;
if (x == 0 )
return 0 ;
while (y > 0 )
{
if ((y & 1 ) == 1 )
res = (res * x) % mod;
y = y >> 1 ;
x = (x * x) % mod;
}
return res;
}
static long CountBST( int H)
{
return power( 2 , H);
}
public static void main(String[] args)
{
int H = 2 ;
System.out.print(CountBST(H));
}
}
|
Python3
def power(x, y):
mod = 1000000007
res = 1
x = x % mod
if (x = = 0 ):
return 0
while (y > 0 ):
if (y & 1 ):
res = (res * x) % mod
y = y >> 1
x = (x * x) % mod
return res
def CountBST(H):
return power( 2 , H)
H = 2
print (CountBST(H))
|
C#
using System;
class GFG{
static int mod = 1000000007;
static long power( long x, int y)
{
long res = 1;
x = x % mod;
if (x == 0)
return 0;
while (y > 0)
{
if ((y & 1) == 1)
res = (res * x) % mod;
y = y >> 1;
x = (x * x) % mod;
}
return res;
}
static long CountBST( int H)
{
return power(2, H);
}
static void Main()
{
int H = 2;
Console.Write(CountBST(H));
}
}
|
Javascript
<script>
var mod = 1000000007;
function power(x, y)
{
var res = 1;
x = x % mod;
if (x == 0)
return 0;
while (y > 0) {
if (y & 1)
res = (res * x) % mod;
y = y >> 1;
x = (x * x) % mod;
}
return res;
}
function CountBST(H)
{
return power(2, H);
}
var H = 2;
document.write( CountBST(H));
</script>
|
Time Complexity: O(log2H)
Auxiliary Space: O(1)