Skip to content
Related Articles

Related Articles

Number of anomalies in an array
  • Difficulty Level : Easy
  • Last Updated : 03 Nov, 2020

Given an array A of N integers. An anomaly is a number for which the absolute difference between it and every other number in the array is greater than K where k is a given positive integer. Find the number of anomalies.

Examples: 

Input : arr[] = {1, 3, 5}, k = 1
Output : 3
Explanation:
All the numbers in the array are anamolies because 
For the number 1 abs(1-3)=2, abs(1-5)=4 which all are greater than 1,
For the number 3 abs(3-1)=2, abs(3-5)=2 which all are again greater than 1
For the number 5 abs(5-1)=4, abs(5-3)=2 which all are again greater than 1
So there are 3 anamolies.

Input : arr[] = {7, 1, 8}, k = 5
Output : 1

Simple Approach: 
We simply check for each number if it satisfies the condition given condition that is absolute difference is greater than K or not with each of the other number. 

C++




// A simple C++ solution to count anomalies in
// an array.
#include<iostream>
using namespace std;
 
int countAnomalies(int arr[], int n, int k)
{
   int res = 0;
   for (int i=0; i<n; i++)
   {
      int j;
      for (j=0; j<n; j++)
         if (i != j && abs(arr[i] - arr[j]) <= k)
              break;
 
      if (j == n)
         res++;
   }
   return res;
}
 
int main()
{
   int arr[] = {7, 1, 8}, k = 5;
   int n = sizeof(arr)/sizeof(arr[0]);
   cout << countAnomalies(arr, n, k);
   return 0;
}


Java




// A simple java solution to count
// anomalies in an array.
class GFG
{
static int countAnomalies(int arr[],
                          int n, int k)
{
    int res = 0;
    for (int i = 0; i < n; i++)
    {
        int j;
        for (j = 0; j < n; j++)
            if (i != j && Math.abs(arr[i] -
                                   arr[j]) <= k)
                break;
     
        if (j == n)
            res++;
    }
    return res;
}
 
 
// Driver code
public static void main(String args[])
{
    int arr[] = {7, 1, 8}, k = 5;
    int n = arr.length;
    System.out.println(countAnomalies(arr, n, k));
}
}
 
// This code is contributed by ANKITRAI1


Python3




# A simple Python3 solution to
# count anomalies in an array.
 
def countAnomalies(arr, n, k):
 
    res = 0
    for i in range(0, n):
 
        j = 0
        while j < n:
            if i != j and abs(arr[i] - arr[j]) <= k:
                break
             
            j += 1
         
        if j == n:
            res += 1
     
    return res
 
# Driver Code
if __name__ == "__main__":
 
    arr = [7, 1, 8]
    k = 5
    n = len(arr)
    print(countAnomalies(arr, n, k))
     
# This code is contributed by Rituraj Jain


C#




// A simple C# solution to count
// anomalies in an array.
using System;
 
class GFG
{
static int countAnomalies(int[] arr,
                          int n, int k)
{
    int res = 0;
    for (int i = 0; i < n; i++)
    {
        int j;
        for (j = 0; j < n; j++)
            if (i != j && Math.Abs(arr[i] -
                                arr[j]) <= k)
                break;
     
        if (j == n)
            res++;
    }
    return res;
}
 
 
// Driver code
public static void Main()
{
    int[] arr = {7, 1, 8};
    int k = 5;
    int n = arr.Length;
    Console.WriteLine(countAnomalies(arr, n, k));
}
}
 
// This code is contributed
// by Akanksha Rai(Abby_akku)


PHP




<?php
// A simple PHP solution to count
// anomalies in an array.
function countAnomalies(&$arr, $n, $k)
{
    $res = 0;
    for ($i = 0; $i < $n; $i++)
    {
        for ($j = 0; $j < $n; $j++)
            if ($i != $j && abs($arr[$i] -
                                $arr[$j]) <= $k)
                break;
     
        if ($j == $n)
            $res++;
    }
    return $res;
}
 
// Driver Code
$arr = array(7, 1, 8);
$k = 5;
$n = sizeof($arr);
echo countAnomalies($arr, $n, $k);
 
// This code is contributed
// by ChitraNayal
?>


Output: 

1







 

Time Complexity: O(n * n)



Efficient Approach using Binary Search 
1) Sort the array. 
2) For every element, find the largest element greater than it and the smallest element greater than it. We can find these two in O(Log n) time using Binary Search. If the difference between these two elements is more than k, we increment the result.
Prerequisites for below C++ code : lower_bound in C++, upper_bound in C++

C++




#include<bits/stdc++.h>
using namespace std;
 
int countAnomalies(int a[], int n, int k)
{
 
   // Sort the array so that we can apply binary
   // search.
   sort(a, a+n);
 
   // One by one check every element if it is
   // anomaly or not using binary search.
   int res = 0;
   for (int i=0; i<n; i++)
   {
      int *u = upper_bound(a, a+n, a[i]);
       
      // If arr[i] is not largest element and
      // element just greater than it is within
      // k, then return false.
      if (u != a+n && ((*u) - a[i]) <= k)
         continue
 
      int *s = lower_bound(a, a+n, a[i]);
       
      // If there are more than one occurrences
      // of arr[i], return false.
      if (u - s > 1)
          continue;
 
      // If arr[i] is not smallest element and
      // just smaller element is not k distance away
      if (s != a && (*(s - 1) - a[i]) <= k)
          continue;
 
      res++;     
   }
   return res;
}
 
int main()
{
   int arr[] = {7, 1, 8}, k = 5;
   int n = sizeof(arr)/sizeof(arr[0]);
   cout << countAnomalies(arr, n, k);
   return 0;
}


Java




import java.util.*;
 
class GFG
{
 
    static int countAnomalies(int a[], int n, int k)
    {
 
        // Sort the array so that we can apply binary
        // search.
        Arrays.sort(a);
 
        // One by one check every element if it is
        // anomaly or not using binary search.
        int res = 0;
        for (int i = 0; i < n; i++)
        {
            int u = upper_bound(a, 0, n, a[i]);
 
            // If arr[i] is not largest element and
            // element just greater than it is within
            // k, then return false.
            if (u < n && a[u] - a[i] <= k)
                continue;
 
            int s = lower_bound(a, 0, n, a[i]);
 
            // If there are more than one occurrences
            // of arr[i], return false.
            if (u - s > 1)
                continue;
 
            // If arr[i] is not smallest element and
            // just smaller element is not k distance away
            if (s > 0 && a[s - 1] - a[i] <= k)
                continue;
 
            res++;
        }
        return res;
    }
 
    static int lower_bound(int[] a, int low,
                            int high, int element)
    {
        while (low < high)
        {
            int middle = low + (high - low) / 2;
            if (element > a[middle])
                low = middle + 1;
            else
                high = middle;
        }
        return low;
    }
 
    static int upper_bound(int[] a, int low,
                            int high, int element)
    {
        while (low < high)
        {
            int middle = low + (high - low) / 2;
            if (a[middle] > element)
                high = middle;
            else
                low = middle + 1;
        }
        return low;
    }
 
    public static void main(String[] args)
    {
        int arr[] = { 7, 1, 8 }, k = 5;
        int n = arr.length;
        System.out.print(countAnomalies(arr, n, k));
    }
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 program to implement
# the above approach
def countAnomalies(a, n, k):
 
    # Sort the array so that
    # we can apply binary
    # search.
    a = sorted(a);
 
    # One by one check every
    # element if it is anomaly
    # or not using binary search.
    res = 0;
     
    for i in range(n):
        u = upper_bound(a, 0,
                        n, a[i]);
 
        # If arr[i] is not largest
        # element and element just
        # greater than it is within
        # k, then return False.
        if (u < n and
            a[u] - a[i] <= k):
            continue;
 
        s = lower_bound(a, 0,
                        n, a[i]);
 
        # If there are more than
        # one occurrences of arr[i],
        # return False.
        if (u - s > 1):
            continue;
 
        # If arr[i] is not smallest
        # element and just smaller
        # element is not k distance away
        if (s > 0 and
            a[s - 1] - a[i] <= k):
            continue;
 
        res += 1;
 
    return res;
 
def lower_bound(a, low,
                high, element):
   
    while (low < high):
        middle = int(low +
                 int(high - low) / 2);
        if (element > a[middle]):
            low = middle + 1;
        else:
            high = middle;
 
    return low;
 
def upper_bound(a, low,
                high, element):
    while (low < high):
        middle = int(low +
                    (high - low) / 2);
        if (a[middle] > element):
            high = middle;
        else:
            low = middle + 1;
 
    return low;
 
# Driver code
if __name__ == '__main__':
   
    arr = [7, 1, 8]
    k = 5;
    n = len(arr);
    print(countAnomalies(arr,
                         n, k));
 
# This code is contributed by shikhasingrajput


C#




using System;
 
class GFG{
 
static int countAnomalies(int []a, int n, int k)
{
     
    // Sort the array so that we can
    // apply binary search.
    Array.Sort(a);
 
    // One by one check every element if it is
    // anomaly or not using binary search.
    int res = 0;
     
    for(int i = 0; i < n; i++)
    {
        int u = upper_bound(a, 0, n, a[i]);
 
        // If arr[i] is not largest element and
        // element just greater than it is within
        // k, then return false.
        if (u < n && a[u] - a[i] <= k)
            continue;
 
        int s = lower_bound(a, 0, n, a[i]);
 
        // If there are more than one occurrences
        // of arr[i], return false.
        if (u - s > 1)
            continue;
 
        // If arr[i] is not smallest element and
        // just smaller element is not k distance away
        if (s > 0 && a[s - 1] - a[i] <= k)
            continue;
 
        res++;
    }
    return res;
}
 
static int lower_bound(int[] a, int low,
                       int high, int element)
{
    while (low < high)
    {
        int middle = low + (high - low) / 2;
         
        if (element > a[middle])
            low = middle + 1;
        else
            high = middle;
    }
    return low;
}
 
static int upper_bound(int[] a, int low,
                       int high, int element)
{
    while (low < high)
    {
        int middle = low + (high - low) / 2;
         
        if (a[middle] > element)
            high = middle;
        else
            low = middle + 1;
    }
    return low;
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 7, 1, 8 };
    int k = 5;
    int n = arr.Length;
     
    Console.Write(countAnomalies(arr, n, k));
}
}
 
// This code is contributed by Amit Katiyar


Output: 

1







 

Time Complexity: O(n Log n)
Another efficient solution for small k 
1) Insert all values of the array in a hash table. 
2) Traverse array again and for every value arr[i], search for every value from arr[i] – k to arr[i] + k (excluding arr[i]). If none of the elements are found, then arr[i] is anomaly.
Time Complexity: O(n k)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :