Number of 0s and 1s at prime positions in the given array

Given an array arr[] of size N where each element is either 0 or 1. The task is to find the count of 0s and 1s which are at prime indices.

Examples:

Input: arr[] = {1, 0, 1, 0, 1}
Output:
Number of 0s = 1
Number of 1s = 1

Input: arr[] = {1, 0, 1, 1}
Output:
Number of 0s = 0
Number of 1s = 2

Approach: Traverse the array and for every 0 encountered update the count of 0s if the current index is prime and update the count of 1s for all the 1s which are at prime indices.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include<bits/stdc++.h>
using namespace std;
  
// Function that returns true
// if n is prime
bool isPrime(int n)
{
    if (n <= 1)
        return false;
  
    // Check from 2 to n
    for (int i = 2; i < n; i++) 
    {
        if (n % i == 0)
            return false;
    }
    return true;
}
  
// Function to find the count
// of 0s and 1s at prime indices
void countPrimePosition(int arr[], int n)
{
  
    // To store the count of 0s and 1s
    int c0 = 0, c1 = 0;
      
    for (int i = 0; i < n; i++)
    {
  
        // If current 0 is at
        // prime position
        if (arr[i] == 0 && isPrime(i))
            c0++;
  
        // If current 1 is at
        // prime position
        if (arr[i] == 1 && isPrime(i))
            c1++;
    }
    cout << "Number of 0s = " << c0 << endl;
    cout << "Number of 1s = " << c1;
}
  
// Driver code
int main()
{
    int arr [] = { 1, 0, 1, 0, 1 };
      
    int n = sizeof(arr)/ sizeof(arr[0]);
    countPrimePosition(arr, n);
    return 0;
}
  
// This code is contributed by ihritik

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG {
  
    // Function that returns true
    // if n is prime
    static boolean isPrime(int n)
    {
        if (n <= 1)
            return false;
  
        // Check from 2 to n
        for (int i = 2; i < n; i++) {
            if (n % i == 0)
                return false;
        }
        return true;
    }
  
    // Function to find the count
    // of 0s and 1s at prime indices
    static void countPrimePosition(int arr[])
    {
  
        // To store the count of 0s and 1s
        int c0 = 0, c1 = 0;
        int n = arr.length;
        for (int i = 0; i < n; i++) {
  
            // If current 0 is at
            // prime position
            if (arr[i] == 0 && isPrime(i))
                c0++;
  
            // If current 1 is at
            // prime position
            if (arr[i] == 1 && isPrime(i))
                c1++;
        }
        System.out.println("Number of 0s = " + c0);
        System.out.println("Number of 1s = " + c1);
    }
  
    // Driver code
    public static void main(String[] args)
    {
        int[] arr = { 1, 0, 1, 0, 1 };
        countPrimePosition(arr);
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
  
# Function that returns true 
# if n is prime 
def isPrime(n) : 
      
    if (n <= 1) :
        return False
  
    # Check from 2 to n 
    for i in range(2, n) : 
        if (n % i == 0) :
            return False
          
    return True
  
# Function to find the count 
# of 0s and 1s at prime indices 
def countPrimePosition(arr) :
  
    # To store the count of 0s and 1s 
    c0 = 0; c1 = 0
    n = len(arr); 
      
    for i in range(n) : 
      
        # If current 0 is at 
        # prime position 
        if (arr[i] == 0 and isPrime(i)) :
            c0 += 1
      
        # If current 1 is at 
        # prime position 
        if (arr[i] == 1 and isPrime(i)) :
            c1 += 1
              
    print("Number of 0s =", c0); 
    print("Number of 1s =", c1); 
          
# Driver code 
if __name__ == "__main__" :
  
    arr = [ 1, 0, 1, 0, 1 ]; 
    countPrimePosition(arr); 
  
# This code is contributed by AnkitRai01

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
  
class GFG
{
      
    // Function that returns true
    // if n is prime
    static bool isPrime(int n)
    {
        if (n <= 1)
            return false;
  
        // Check from 2 to n
        for (int i = 2; i < n; i++) 
        {
            if ((n % i) == 0)
                return false;
        }
        return true;
    }
  
    // Function to find the count
    // of 0s and 1s at prime indices
    static void countPrimePosition(int []arr)
    {
  
        // To store the count of 0s and 1s
        int c0 = 0, c1 = 0;
        int n = arr.Length;
        for (int i = 0; i < n; i++) 
        {
  
            // If current 0 is at
            // prime position
            if ((arr[i] == 0) && (isPrime(i)))
                c0++;
  
            // If current 1 is at
            // prime position
            if ((arr[i] == 1) && (isPrime(i)))
                c1++;
        }
        Console.WriteLine("Number of 0s = " + c0);
        Console.WriteLine("Number of 1s = " + c1);
    }
  
    // Driver code
    static public void Main ()
    {
          
        int[] arr = { 1, 0, 1, 0, 1 };
        countPrimePosition(arr);
    }
}
  
// This code is contributed by ajit. 

chevron_right


Output:

Number of 0s = 1
Number of 1s = 1


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : jit_t, AnkitRai01, ihritik