Number of n-digits non-decreasing integers

Given an integer n > 0, which denotes the number of digits, the task to find total number of n-digit positive integers which are non-decreasing in nature.
A non-decreasing integer is a one in which all the digits from left to right are in non-decreasing form. ex: 1234, 1135, ..etc.
Note :Leading zeros also count in non-decreasing integers such as 0000, 0001, 0023, etc are also non-decreasing integers of 4-digits.

Examples :

Input : n = 1
Output : 10
Numbers are 0, 1, 2, ...9.

Input : n = 2
Output : 55

Input : n = 4
Output : 715



Naive Approach : We generate all possible n-digit numbers and then for each number we check whether it is non-decreasing or not.

Time Complexity : (n*10^n), where 10^n is for generating all possible n-digits number and n is for checking whether a particular number is non-decreasing or not.

Dynamic Programming :
If we fill digits one by one from left to right, following conditions hold.

  1. If current last digit is 9, we can fill only 9s in remaining places. So only one solution is possible if current last digit is 9.
  2. If current last digit is less than 9, then we can recursively compute count using following formula.
    a[i][j] = a[i-1][j] + a[i][j + 1] 
             For every digit j smaller than 9.
    
    We consider previous length count and count
    to be increased by all greater digits.
    

We build a matrix a[][] where a[i][j] = count of all valid i-digit non-decreasing integers with j or greater than j as the leading digit. The solution is based on below observations. We fill this matrix column-wise, first calculating a[1][9] then using this value to compute a[2][8] and so on.
At any instant if we wish to calculate a[i][j] means number of i-digits non-decreasing integers with leading digit as j or digit greater than j, we should add up a[i-1][j] (number of i-1 digit integers which should start from j or greater digit, because in this case if we place j as its left most digit then our number will be i-digit non-decreasing number) and a[i][j+1] (number of i-digit integers which should start with digit equals to greater than j+1). So, a[i][j] = a[i-1][j] + a[i][j+1].

C/C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for counting n digit numbers with
// non decreasing digits
#include <bits/stdc++.h>
using namespace std;
  
// Returns count of non- decreasing numbers with
// n digits.
int nonDecNums(int n)
{
    /* a[i][j] = count of all possible number
       with i digits having leading digit as j */
    int a[n + 1][10];
  
    // Initialization of all 0-digit number
    for (int i = 0; i <= 9; i++)
        a[0][i] = 1;
  
    /* Initialization of all i-digit
      non-decreasing number leading with 9*/
    for (int i = 1; i <= n; i++)
        a[i][9] = 1;
  
    /* for all digits we should calculate
      number of ways depending upon leading
      digits*/
    for (int i = 1; i <= n; i++)
        for (int j = 8; j >= 0; j--)
            a[i][j] = a[i - 1][j] + a[i][j + 1];
  
    return a[n][0];
}
  
// driver program
int main()
{
    int n = 2;
    cout << "Non-decreasing digits = "
         << nonDecNums(n) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for counting n digit numbers with
// non decreasing digits
import java.io.*;
  
class GFG {
  
    // Function that returns count of non- decreasing numbers
    // with n digits
    static int nonDecNums(int n)
    {
        // a[i][j] = count of all possible number
        // with i digits having leading digit as j
        int[][] a = new int[n + 1][10];
  
        // Initialization of all 0-digit number
        for (int i = 0; i <= 9; i++)
            a[0][i] = 1;
  
        // Initialization of all i-digit
        // non-decreasing number leading with 9
        for (int i = 1; i <= n; i++)
            a[i][9] = 1;
  
        // for all digits we should calculate
        // number of ways depending upon leading
        // digits
        for (int i = 1; i <= n; i++)
            for (int j = 8; j >= 0; j--)
                a[i][j] = a[i - 1][j] + a[i][j + 1];
  
        return a[n][0];
    }
  
    // driver program
    public static void main(String[] args)
    {
        int n = 2;
        System.out.println("Non-decreasing digits = " + nonDecNums(n));
    }
}
  
// Contributed by Pramod Kumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# function to find number of diagonals
// in n sided convex polygon
using System;
  
class GFG {
      
    // Function that returns count of non- 
    // decreasing numbers with n digits
    static int nonDecNums(int n)
    {
        // a[i][j] = count of all possible number
        // with i digits having leading digit as j
        int[, ] a = new int[n + 1, 10];
  
        // Initialization of all 0-digit number
        for (int i = 0; i <= 9; i++)
            a[0, i] = 1;
  
        // Initialization of all i-digit
        // non-decreasing number leading with 9
        for (int i = 1; i <= n; i++)
            a[i, 9] = 1;
  
        // for all digits we should calculate
        // number of ways depending upon leading
        // digits
        for (int i = 1; i <= n; i++)
            for (int j = 8; j >= 0; j--)
                a[i, j] = a[i - 1, j] + a[i, j + 1];
  
        return a[n, 0];
    }
  
    // driver program
    public static void Main()
    {
        int n = 2;
        Console.WriteLine("Non-decreasing digits = "
                                       nonDecNums(n));
    }
}
  
// This code is contributed by Sam007

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program for counting 
// n digit numbers with
// non decreasing digits
  
// Returns count of non- 
// decreasing numbers with
// n digits.
  
function nonDecNums($n)
{
    /* a[i][j] = count of 
    all possible number
    with i digits having 
    leading digit as j */
  
    // Initialization of 
    // all 0-digit number
    for ($i = 0; $i <= 9; $i++)
        $a[0][$i] = 1;
  
    /* Initialization of all 
    i-digit non-decreasing 
    number leading with 9*/
    for ($i = 1; $i <= $n; $i++)
        $a[$i][9] = 1;
  
    /* for all digits we should 
    calculate number of ways 
    depending upon leading digits*/
    for ($i = 1; $i <= $n; $i++)
        for ($j = 8; $j >= 0; $j--)
            $a[$i][$j] = $a[$i - 1][$j] + 
                         $a[$i][$j + 1];
  
    return $a[$n][0];
}
  
// Driver Code
$n = 2;
echo "Non-decreasing digits = ",
            nonDecNums($n),"\n";
  
// This code is contributed by m_kit
?>

chevron_right



Output :

Non-decreasing digits = 55

Time Complexity : O(10*n) equivalent to O(n).

This article is contributed by Shivam Pradhan (anuj_charm). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : Sam007, jit_t