Given n friends and their friendship relations, find the total number of groups that exist. And the number of ways of new groups that can be formed consisting of people from every existing group.

If no relation is given for any person then that person has no group and singularly forms a group. If a is a friend of b and b is a friend of c, then a b and c form a group.

**Examples:**

Input : Number of people = 6 Relations : 1 - 2, 3 - 4 and 5 - 6 Output: Number of existing Groups = 3 Number of new groups that can be formed = 8 Explanation: The existing groups are (1, 2), (3, 4), (5, 6). The new 8 groups that can be formed by considering a member of every group are (1, 3, 5), (1, 3, 6), (1, 4, 5), (1, 4, 6), (2, 3, 5), (2, 3, 6), (2, 4, 5) and (2, 4, 6). Input: Number of people = 6 Relations : 1 - 2 and 2 - 3 Output: Number of existing Groups = 2 Number of new groups that can be formed = 3 Explanation: The existing groups are (1, 2, 3) and (4). The new groups that can be formed by considering a member of every group are (1, 4), (2, 4), (3, 4).

To count number of groups, we need to simply count connected components in the given undirected graph. Counting connected components can be easily done using DFS or BFS. Since this is an undirected graph, the number of times a Depth First Search starts from an unvisited vertex for every friend is equal to the number of groups formed.

To count number of ways in which we form new groups can be done using simply formula which is (N1)*(N2)*….(Nn) where Ni is the no of people in i-th group.

## C++

`// C++ program to count number of existing` `// groups and number of new groups that can` `// be formed.` `#include <bits/stdc++.h>` `using` `namespace` `std;` `class` `Graph {` ` ` `int` `V; ` `// No. of vertices` ` ` ` ` `// Pointer to an array containing` ` ` `// adjacency lists` ` ` `list<` `int` `>* adj;` ` ` ` ` `int` `countUtil(` `int` `v, ` `bool` `visited[]);` `public` `:` ` ` `Graph(` `int` `V); ` `// Constructor` ` ` ` ` `// function to add an edge to graph` ` ` `void` `addRelation(` `int` `v, ` `int` `w);` ` ` `void` `countGroups();` `};` `Graph::Graph(` `int` `V)` `{` ` ` `this` `->V = V;` ` ` `adj = ` `new` `list<` `int` `>[V];` `}` `// Adds a relation as a two way edge of` `// undirected graph.` `void` `Graph::addRelation(` `int` `v, ` `int` `w)` `{` ` ` `// Since indexing is 0 based, reducing` ` ` `// edge numbers by 1.` ` ` `v--;` ` ` `w--;` ` ` `adj[v].push_back(w);` ` ` `adj[w].push_back(v);` `}` `// Returns count of not visited nodes reachable` `// from v using DFS.` `int` `Graph::countUtil(` `int` `v, ` `bool` `visited[])` `{` ` ` `int` `count = 1;` ` ` `visited[v] = ` `true` `;` ` ` `for` `(` `auto` `i=adj[v].begin(); i!=adj[v].end(); ++i)` ` ` `if` `(!visited[*i])` ` ` `count = count + countUtil(*i, visited);` ` ` `return` `count; ` `}` `// A DFS based function to Count number of` `// existing groups and number of new groups` `// that can be formed using a member of` `// every group.` `void` `Graph::countGroups()` `{` ` ` `// Mark all the vertices as not visited` ` ` `bool` `* visited = ` `new` `bool` `[V];` ` ` `memset` `(visited, 0, V*` `sizeof` `(` `int` `));` ` ` `int` `existing_groups = 0, new_groups = 1;` ` ` `for` `(` `int` `i = 0; i < V; i++)` ` ` `{` ` ` `// If not in any group.` ` ` `if` `(visited[i] == ` `false` `)` ` ` `{` ` ` `existing_groups++;` ` ` ` ` `// Number of new groups that` ` ` `// can be formed.` ` ` `new_groups = new_groups *` ` ` `countUtil(i, visited);` ` ` `}` ` ` `}` ` ` ` ` `if` `(existing_groups == 1)` ` ` `new_groups = 0;` ` ` ` ` `cout << ` `"No. of existing groups are "` ` ` `<< existing_groups << endl;` ` ` `cout << ` `"No. of new groups that can be"` ` ` `" formed are "` `<< new_groups` ` ` `<< endl;` `}` `// Driver code` `int` `main()` `{` ` ` `int` `n = 6;` ` ` `// Create a graph given in the above diagram` ` ` `Graph g(n); ` `// total 6 people` ` ` `g.addRelation(1, 2); ` `// 1 and 2 are friends` ` ` `g.addRelation(3, 4); ` `// 3 and 4 are friends` ` ` `g.addRelation(5, 6); ` `// 5 and 6 are friends` ` ` `g.countGroups();` ` ` `return` `0;` `}` |

## Java

`// Java program to count number of` `// existing groups and number of` `// new groups that can be formed.` `import` `java.util.*;` `import` `java.io.*;` `class` `Graph{` `// No. of vertices` `private` `int` `V;` `// Array of lists for Adjacency` `// List Representation` `private` `LinkedList<Integer> adj[];` `// Constructor` `@SuppressWarnings` `(` `"unchecked"` `) Graph(` `int` `v)` `{` ` ` `V = v;` ` ` `adj = ` `new` `LinkedList[V];` ` ` ` ` `for` `(` `int` `i = ` `0` `; i < V; i++)` ` ` `{` ` ` `adj[i] = ` `new` `LinkedList();` ` ` `}` `}` `// Adds a relation as a two way edge of` `// undirected graph.` `public` `void` `addRelation(` `int` `v, ` `int` `w)` `{` ` ` ` ` `// Since indexing is 0 based, reducing` ` ` `// edge numbers by 1.` ` ` `v--;` ` ` `w--;` ` ` `adj[v].add(w);` ` ` `adj[w].add(v);` `}` `// Returns count of not visited nodes` `// reachable from v using DFS.` `int` `countUtil(` `int` `v, ` `boolean` `visited[])` `{` ` ` `int` `count = ` `1` `;` ` ` `visited[v] = ` `true` `;` ` ` ` ` `// Recur for all the vertices adjacent` ` ` `// to this vertex` ` ` `Iterator<Integer> i = adj[v].listIterator();` ` ` `while` `(i.hasNext())` ` ` `{` ` ` `int` `n = i.next();` ` ` `if` `(!visited[n])` ` ` `count = count + countUtil(n, visited);` ` ` `}` ` ` `return` `count;` `}` `// A DFS based function to Count number of` `// existing groups and number of new groups` `// that can be formed using a member of` `// every group.` `void` `countGroups()` `{` ` ` ` ` `// Mark all the vertices as not` ` ` `// visited(set as false by default` ` ` `// in java)` ` ` `boolean` `visited[] = ` `new` `boolean` `[V];` ` ` `int` `existing_groups = ` `0` `, new_groups = ` `1` `;` ` ` ` ` `for` `(` `int` `i = ` `0` `; i < V; i++)` ` ` `{` ` ` ` ` `// If not in any group.` ` ` `if` `(visited[i] == ` `false` `)` ` ` `{` ` ` `existing_groups++;` ` ` `// Number of new groups that` ` ` `// can be formed.` ` ` `new_groups = new_groups *` ` ` `countUtil(i, visited);` ` ` `}` ` ` `}` ` ` `if` `(existing_groups == ` `1` `)` ` ` `new_groups = ` `0` `;` ` ` ` ` `System.out.println(` `"No. of existing groups are "` `+` ` ` `existing_groups);` ` ` `System.out.println(` `"No. of new groups that "` `+` ` ` `"can be formed are "` `+` ` ` `new_groups);` `}` `// Driver code` `public` `static` `void` `main(String[] args)` `{` ` ` `int` `n = ` `6` `;` ` ` `// Create a graph given in` ` ` `// the above diagram` ` ` `Graph g = ` `new` `Graph(n); ` `// total 6 people` ` ` `g.addRelation(` `1` `, ` `2` `); ` `// 1 and 2 are friends` ` ` `g.addRelation(` `3` `, ` `4` `); ` `// 3 and 4 are friends` ` ` `g.addRelation(` `5` `, ` `6` `); ` `// 5 and 6 are friends` ` ` `g.countGroups();` `}` `}` `// This code is contributed by MuskanKalra1` |

## Python3

`# Python3 program to count number of` `# existing groups and number of new` `# groups that can be formed.` `class` `Graph:` ` ` `def` `__init__(` `self` `, V):` ` ` `self` `.V ` `=` `V` ` ` `self` `.adj ` `=` `[[] ` `for` `i ` `in` `range` `(V)]` ` ` ` ` `# Adds a relation as a two way` ` ` `# edge of undirected graph.` ` ` `def` `addRelation(` `self` `, v, w):` ` ` ` ` `# Since indexing is 0 based,` ` ` `# reducing edge numbers by 1.` ` ` `v ` `-` `=` `1` ` ` `w ` `-` `=` `1` ` ` `self` `.adj[v].append(w)` ` ` `self` `.adj[w].append(v)` ` ` ` ` `# Returns count of not visited` ` ` `# nodes reachable from v using DFS.` ` ` `def` `countUtil(` `self` `, v, visited):` ` ` `count ` `=` `1` ` ` `visited[v] ` `=` `True` ` ` `i ` `=` `0` ` ` `while` `i !` `=` `len` `(` `self` `.adj[v]):` ` ` `if` `(` `not` `visited[` `self` `.adj[v][i]]):` ` ` `count ` `=` `count ` `+` `self` `.countUtil(` `self` `.adj[v][i],` ` ` `visited)` ` ` `i ` `+` `=` `1` ` ` `return` `count` ` ` ` ` `# A DFS based function to Count number` ` ` `# of existing groups and number of new` ` ` `# groups that can be formed using a` ` ` `# member of every group.` ` ` `def` `countGroups(` `self` `):` ` ` ` ` `# Mark all the vertices as` ` ` `# not visited` ` ` `visited ` `=` `[` `0` `] ` `*` `self` `.V` ` ` ` ` `existing_groups ` `=` `0` ` ` `new_groups ` `=` `1` ` ` `for` `i ` `in` `range` `(` `self` `.V):` ` ` ` ` `# If not in any group.` ` ` `if` `(visited[i] ` `=` `=` `False` `):` ` ` `existing_groups ` `+` `=` `1` ` ` ` ` `# Number of new groups that` ` ` `# can be formed.` ` ` `new_groups ` `=` `(new_groups ` `*` ` ` `self` `.countUtil(i, visited))` ` ` ` ` `if` `(existing_groups ` `=` `=` `1` `):` ` ` `new_groups ` `=` `0` ` ` ` ` `print` `(` `"No. of existing groups are"` `,` ` ` `existing_groups)` ` ` `print` `(` `"No. of new groups that"` `,` ` ` `"can be formed are"` `, new_groups)` `# Driver code` `if` `__name__ ` `=` `=` `'__main__'` `:` ` ` `n ` `=` `6` ` ` `# Create a graph given in the above diagram` ` ` `g ` `=` `Graph(n) ` `# total 6 people` ` ` `g.addRelation(` `1` `, ` `2` `) ` `# 1 and 2 are friends` ` ` `g.addRelation(` `3` `, ` `4` `) ` `# 3 and 4 are friends` ` ` `g.addRelation(` `5` `, ` `6` `) ` `# 5 and 6 are friends` ` ` `g.countGroups()` `# This code is contributed by PranchalK` |

**Output:**

No. of existing groups are 3 No. of new groups that can be formed are 8

**Time complexity**: O(N + R) where N is the number of people and R is the number of relations.

This article is contributed by **Raj**. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.