Related Articles

# Number of GP (Geometric Progression) subsequences of size 3

• Difficulty Level : Hard
• Last Updated : 20 Nov, 2020

Given n elements and a ratio r, find the number of G.P. subsequences with length 3. A subsequence is considered GP with length 3 with ration r.

Examples:

```Input : arr[] = {1, 1, 2, 2, 4}
r = 2
Output : 4
Explanation: Any of the two 1s can be chosen
as the first element, the second element can
be any of the two 2s, and the third element
of the subsequence must be equal to 4.

Input : arr[] = {1, 1, 2, 2, 4}
r = 3
Output : 0
```

A naive approach is to use three nested for loops and check for every subsequence with length 3 and keep a count of the subsequences. The complexity is O(n3).

An efficient approach is to solve the problem for the fixed middle element of progression. This means that if we fix element a[i] as middle, then it must be multiple of r, and a[i]/r and a[i]*r must be present. We count the number of occurrences of a[i]/r and a[i]*r and then multiply the counts. To do this, we can use the concept of hashing where we store the count of all possible elements in two hash maps, one indicating the number of elements on the left and the other indicating the number of elements to the right.

Below is the implementation of the above approach

## C++

 `// C++ program to count GP subsequences of size 3.``#include ``using` `namespace` `std;` `// Returns count of G.P. subseqeunces``// with length 3 and common ratio r``long` `long` `subsequences(``int` `a[], ``int` `n, ``int` `r)``{``    ``// hashing to maintain left and right array``    ``// elements to the main count``    ``unordered_map<``int``, ``int``> left, right;` `    ``// stores the answer``    ``long` `long` `ans = 0;` `    ``// traverse through the elements``    ``for` `(``int` `i = 0; i < n; i++)``        ``right[a[i]]++; ``// keep the count in the hash` `    ``// traverse through all elements``    ``// and find out the number of elements as k1*k2``    ``for` `(``int` `i = 0; i < n; i++) {` `        ``// keep the count of left and right elements``        ``// left is a[i]/r and right a[i]*r``        ``long` `long` `c1 = 0, c2 = 0;` `        ``// if the current element is divisible by k,``        ``// count elements in left hash.``        ``if` `(a[i] % r == 0)``            ``c1 = left[a[i] / r];` `        ``// decrease the count in right hash``        ``right[a[i]]--;` `        ``// number of right elements``        ``c2 = right[a[i] * r];` `        ``// calculate the answer``        ``ans += c1 * c2;` `        ``left[a[i]]++; ``// left count of a[i]``    ``}` `    ``// returns answer``    ``return` `ans;``}` `// driver program``int` `main()``{``    ``int` `a[] = { 1, 2, 6, 2, 3, 6, 9, 18, 3, 9 };``    ``int` `n = ``sizeof``(a) / ``sizeof``(a);``    ``int` `r = 3;``    ``cout << subsequences(a, n, r);``    ``return` `0;``}`

## Java

 `// Java program to count GP subsequences``// of size 3.``import` `java.util.*;``import` `java.lang.*;` `class` `GFG{` `// Returns count of G.P. subseqeunces``// with length 3 and common ratio r``static` `long` `subsequences(``int` `a[], ``int` `n, ``int` `r)``{``    ` `    ``// Hashing to maintain left and right array``    ``// elements to the main count``    ``Map left = ``new` `HashMap<>(),``                         ``right = ``new` `HashMap<>();` `    ``// Stores the answer``    ``long` `ans = ``0``;` `    ``// Traverse through the elements``    ``for``(``int` `i = ``0``; i < n; i++)``    ` `        ``// Keep the count in the hash``        ``right.put(a[i],``        ``right.getOrDefault(a[i], ``0``) + ``1``);` `    ``// Traverse through all elements``    ``// and find out the number of``    ``// elements as k1*k2``    ``for``(``int` `i = ``0``; i < n; i++)``    ``{``        ` `        ``// Keep the count of left and right``        ``// elements left is a[i]/r and``        ``// right a[i]*r``        ``long` `c1 = ``0``, c2 = ``0``;` `        ``// If the current element is divisible``        ``// by k, count elements in left hash.``        ``if` `(a[i] % r == ``0``)``            ``c1 = left.getOrDefault(a[i] / r, ``0``);` `        ``// Decrease the count in right hash``        ``right.put(a[i],``        ``right.getOrDefault(a[i], ``0``) - ``1``);` `        ``// Number of right elements``        ``c2 = right.getOrDefault(a[i] * r, ``0``);` `        ``// Calculate the answer``        ``ans += c1 * c2;``        ` `        ``// left count of a[i]``        ``left.put(a[i],``        ``left.getOrDefault(a[i], ``0``) + ``1``);``    ``}``    ` `    ``// Returns answer``    ``return` `ans;``}` `// Driver Code``public` `static` `void` `main (String[] args)``{``    ``int` `a[] = { ``1``, ``2``, ``6``, ``2``, ``3``,``                ``6``, ``9``, ``18``, ``3``, ``9` `};``    ``int` `n = a.length;``    ``int` `r = ``3``;``    ` `    ``System.out.println(subsequences(a, n, r));``}``}` `// This code is contributed by offbeat`

## Python3

 `# Python3 program to count GP subsequences``# of size 3.``from` `collections ``import` `defaultdict` `# Returns count of G.P. subseqeunces``# with length 3 and common ratio r``def` `subsequences(a, n, r):` `    ``# hashing to maintain left and right``    ``# array elements to the main count``    ``left ``=` `defaultdict(``lambda``:``0``)``    ``right ``=` `defaultdict(``lambda``:``0``)` `    ``# stores the answer``    ``ans ``=` `0` `    ``# traverse through the elements``    ``for` `i ``in` `range``(``0``, n):``        ``right[a[i]] ``+``=` `1` `# keep the count in the hash` `    ``# traverse through all elements and``    ``# find out the number of elements as k1*k2``    ``for` `i ``in` `range``(``0``, n):` `        ``# keep the count of left and right elements``        ``# left is a[i]/r and right a[i]*r``        ``c1, c2 ``=` `0``, ``0` `        ``# if the current element is divisible``        ``# by k, count elements in left hash.``        ``if` `a[i] ``%` `r ``=``=` `0``:``            ``c1 ``=` `left[a[i] ``/``/` `r]` `        ``# decrease the count in right hash``        ``right[a[i]] ``-``=` `1` `        ``# number of right elements``        ``c2 ``=` `right[a[i] ``*` `r]` `        ``# calculate the answer``        ``ans ``+``=` `c1 ``*` `c2` `        ``left[a[i]] ``+``=` `1` `# left count of a[i]` `    ``return` `ans` `# Driver Code``if` `__name__ ``=``=` `"__main__"``:` `    ``a ``=` `[``1``, ``2``, ``6``, ``2``, ``3``, ``6``, ``9``, ``18``, ``3``, ``9``]``    ``n ``=` `len``(a)``    ``r ``=` `3``    ``print``(subsequences(a, n, r))` `# This code is contributed by``# Rituraj Jain`

## C#

 `// C# program to count GP``// subsequences of size 3.``using` `System;``using` `System.Collections.Generic;``class` `GFG{` `// Returns count of G.P. subseqeunces``// with length 3 and common ratio r``static` `long` `subsequences(``int` `[]a,``                         ``int` `n, ``int` `r)``{    ``  ``// Hashing to maintain left and``  ``// right array elements to the``  ``// main count``  ``Dictionary<``int``,``             ``int``> left =``             ``new` `Dictionary<``int``,``                            ``int``>(),``  ``right = ``new` `Dictionary<``int``,``                         ``int``>();` `  ``// Stores the answer``  ``long` `ans = -1;` `  ``// Traverse through the``  ``// elements``  ``for``(``int` `i = 0; i < n; i++)` `    ``// Keep the count in the hash``    ``if` `(right.ContainsKey(a[i]))``      ``right[a[i]] = right[a[i]] + 1;``  ``else``    ``right.Add(a[i], 1);` `  ``// Traverse through all elements``  ``// and find out the number of``  ``// elements as k1*k2``  ``for``(``int` `i = 0; i < n; i++)``  ``{``    ``// Keep the count of left and``    ``// right elements left is a[i]/r``    ``// and right a[i]*r``    ``long` `c1 = 0, c2 = 0;` `    ``// If the current element is``    ``// divisible by k, count elements``    ``// in left hash.``    ``if` `(a[i] % r == 0)``      ``if` `(left.ContainsKey(a[i] / r))``        ``c1 =  right[a[i] / r];``    ``else` `      ``c1 =  0;` `    ``// Decrease the count in right``    ``// hash``    ``if` `(right.ContainsKey(a[i]))``      ``right[a[i]] = right[a[i]];``    ``else``      ``right.Add(a[i], -1);` `    ``// Number of right elements``    ``if` `(right.ContainsKey(a[i] * r))``      ``c2 = right[a[i] * r];``    ``else``      ``c2 = 0;` `    ``// Calculate the answer``    ``ans += (c1 * c2);` `    ``// left count of a[i]``    ``if` `(left.ContainsKey(a[i]))``      ``left[a[i]] = 0;``    ``else``      ``left.Add(a[i], 1);``  ``}` `  ``// Returns answer``  ``return` `ans - 1;``}` `// Driver Code``public` `static` `void` `Main(String[] args)``{``  ``int` `[]a = {1, 2, 6, 2, 3,``             ``6, 9, 18, 3, 9};``  ``int` `n = a.Length;``  ``int` `r = 3;``  ``Console.WriteLine(subsequences(a,``                                 ``n, r));``}``}` `// This code is contributed by Princi Singh`
Output:
```6

```

Time complexity: O(n)

The above solution does not handle the case when r is 1 : For example, for input = {1,1,1,1,1}, there are 10 possible for G.P. subsequences of length 3, which can be calculated by using 5C3. Such a procedure should be implemented for all cases where r = 1. Below is the modified code to handle this.

## C++

 `// C++ program to count GP subsequences of size 3.``#include ``using` `namespace` `std;` `// to calculate nCr``// DP approach``int` `binomialCoeff(``int` `n, ``int` `k) {``  ``int` `C[k + 1];``  ``memset``(C, 0, ``sizeof``(C));``  ``C = 1; ``// nC0 is 1``  ``for` `(``int` `i = 1; i <= n; i++) {` `    ``// Compute next row of pascal triangle using``    ``// the previous row``    ``for` `(``int` `j = min(i, k); j > 0; j--)``      ``C[j] = C[j] + C[j - 1];``  ``}``  ``return` `C[k];``}` `// Returns count of G.P. subseqeunces``// with length 3 and common ratio r``long` `long` `subsequences(``int` `a[], ``int` `n, ``int` `r)``{``    ``// hashing to maintain left and right array``    ``// elements to the main count``    ``unordered_map<``int``, ``int``> left, right;` `    ``// stores the answer``    ``long` `long` `ans = 0;` `    ``// traverse through the elements``    ``for` `(``int` `i = 0; i < n; i++)``        ``right[a[i]]++; ``// keep the count in the hash` `    ``// IF RATIO IS ONE``    ``if` `(r == 1){` `        ``// traverse the count in hash``        ``for` `(``auto` `i : right) {` `             ``// calculating nC3, where 'n' is``             ``// the number of times each number is``             ``// repeated in the input``             ``ans += binomialCoeff(i.second, 3);``        ``}` `        ``return` `ans;``    ``}` `    ``// traverse through all elements``    ``// and find out the number of elements as k1*k2``    ``for` `(``int` `i = 0; i < n; i++) {` `        ``// keep the count of left and right elements``        ``// left is a[i]/r and right a[i]*r``        ``long` `long` `c1 = 0, c2 = 0;` `        ``// if the current element is divisible by k,``        ``// count elements in left hash.``        ``if` `(a[i] % r == 0)``            ``c1 = left[a[i] / r];` `        ``// decrease the count in right hash``        ``right[a[i]]--;` `        ``// number of right elements``        ``c2 = right[a[i] * r];` `        ``// calculate the answer``        ``ans += c1 * c2;` `        ``left[a[i]]++; ``// left count of a[i]``    ``}` `    ``// returns answer``    ``return` `ans;``}` `// driver program``int` `main()``{``    ``int` `a[] = { 1, 2, 6, 2, 3, 6, 9, 18, 3, 9 };``    ``int` `n = ``sizeof``(a) / ``sizeof``(a);``    ``int` `r = 3;``    ``cout << subsequences(a, n, r);``    ``return` `0;``}`

## Java

 `// Java program to count GP``// subsequences of size 3.``import` `java.util.*;` `class` `GFG{` `// To calculate nCr``// DP approach``static` `int` `binomialCoeff(``int` `n, ``int` `k)``{``    ``int` `[]C = ``new` `int``[k + ``1``];``    ` `    ``C[``0``] = ``1``; ``// nC0 is 1``    ``for``(``int` `i = ``1``; i <= n; i++)``    ``{``        ` `        ``// Compute next row of pascal``        ``// triangle using the previous row``        ``for``(``int` `j = Math.min(i, k); j > ``0``; j--)``            ``C[j] = C[j] + C[j - ``1``];``    ``}``    ``return` `C[k];``}` `// Returns count of G.P. subseqeunces``// with length 3 and common ratio r``static` `long` `subsequences(``int` `a[], ``int` `n, ``int` `r)``{``    ` `    ``// Hashing to maintain left and right array``    ``// elements to the main count``    ``HashMap left = ``new` `HashMap<>();``    ``HashMap right = ``new` `HashMap<>();` `    ``// Stores the answer``    ``long` `ans = ``0``;``    ` `    ``// Traverse through the elements``    ``for``(``int` `i = ``0``; i < n; i++)``        ``if` `(right.containsKey(a[i]))``        ``{``            ``right.put(a[i], right.get(a[i]) + ``1``);``        ``}``        ``else``        ``{``            ``right.put(a[i], ``1``);``        ``}` `    ``// IF RATIO IS ONE``    ``if` `(r == ``1``)``    ``{``        ` `        ``// Traverse the count in hash``        ``for``(Map.Entry i : right.entrySet())``        ``{``            ` `            ``// Calculating nC3, where 'n' is``            ``// the number of times each number is``            ``// repeated in the input``            ``ans += binomialCoeff(i.getValue(), ``3``);``        ``}``        ``return` `ans;``    ``}` `    ``// Traverse through all elements and``    ``// find out the number of elements as k1*k2``    ``for``(``int` `i = ``0``; i < n; i++)``    ``{``        ` `        ``// Keep the count of left and right``        ``// elements left is a[i]/r and``        ``// right a[i]*r``        ``long` `c1 = ``0``, c2 = ``0``;` `        ``// If the current element is divisible``        ``// by k, count elements in left hash.``        ``if` `(a[i] % r == ``0``)``            ``if` `(left.containsKey(a[i] / r))``                ``c1 = left.get(a[i] / r);` `        ``// Decrease the count in right hash``        ``if` `(right.containsKey(a[i]))``        ``{``            ``right.put(a[i], right.get(a[i]) - ``1``);``        ``}``        ``else``        ``{``            ``right.put(a[i], -``1``);``        ``}``        ` `        ``// Number of right elements``        ``if` `(right.containsKey(a[i] * r))``            ``c2 = right.get(a[i] * r);` `        ``// Calculate the answer``        ``ans += c1 * c2;` `        ``if` `(left.containsKey(a[i]))``        ``{``            ``left.put(a[i], left.get(a[i]) + ``1``);``        ``}``        ``else``        ``{``            ``left.put(a[i], ``1``);``        ``}``// left count of a[i]``    ``}` `    ``// Returns answer``    ``return` `ans;``}` `// Driver code``public` `static` `void` `main(String[] args)``{``    ``int` `a[] = { ``1``, ``2``, ``6``, ``2``, ``3``,``                ``6``, ``9``, ``18``, ``3``, ``9` `};``    ``int` `n = a.length;``    ``int` `r = ``3``;``    ` `    ``System.out.print(subsequences(a, n, r));``}``}` `// This code is contributed by Amit Katiyar`

## Python3

 `# Python3 program to count``# GP subsequences of size 3.``from` `collections ``import` `defaultdict` `# To calculate nCr``# DP approach``def` `binomialCoeff(n, k):``  ` `  ``C ``=` `[``0``] ``*` `(k ``+` `1``)`` ` `  ``# nC0 is 1``  ``C[``0``] ``=` `1` `  ` `  ``for`  `i ``in` `range` `(``1``, n ``+` `1``):` `    ``# Compute next row of pascal``    ``# triangle using the previous row``    ``for` `j ``in` `range` `(``min``(i, k), ``-``1``, ``-``1``):``      ``C[j] ``=` `C[j] ``+` `C[j ``-` `1``]``  ``return` `C[k]` `# Returns count of G.P. subseqeunces``# with length 3 and common ratio r``def` `subsequences(a, n, r):` `    ``# hashing to maintain left``    ``# and right array elements``    ``# to the main count``    ``left ``=` `defaultdict (``int``)``    ``right ``=` `defaultdict (``int``)` `    ``# Stores the answer``    ``ans ``=` `0` `    ``# Traverse through``    ``# the elements``    ``for` `i ``in` `range` `(n):``      ` `        ``# Keep the count``        ``# in the hash``        ``right[a[i]] ``+``=` `1` `    ``# IF RATIO IS ONE``    ``if` `(r ``=``=` `1``):` `        ``# Traverse the count``        ``# in hash``        ``for`  `i ``in` `right:` `             ``# calculating nC3, where 'n' is``             ``# the number of times each number is``             ``# repeated in the input``             ``ans ``+``=` `binomialCoeff(right[i], ``3``)``      ` `        ``return` `ans` `    ``# traverse through all elements``    ``# and find out the number``    ``# of elements as k1*k2``    ``for` `i ``in` `range` `(n):` `        ``# Keep the count of left``        ``# and right elements left``        ``# is a[i]/r and right a[i]*r``        ``c1 ``=` `0``        ``c2 ``=` `0``;` `        ``# if the current element``        ``# is divisible by k, count``        ``# elements in left hash.``        ``if` `(a[i] ``%` `r ``=``=` `0``):``            ``c1 ``=` `left[a[i] ``/``/` `r]` `        ``# Decrease the count``        ``# in right hash``        ``right[a[i]] ``-``=` `1` `        ``# Number of right elements``        ``c2 ``=` `right[a[i] ``*` `r]` `        ``# Calculate the answer``        ``ans ``+``=` `c1 ``*` `c2` `        ``# left count of a[i]``        ``left[a[i]] ``+``=` `1``   ` `    ``# returns answer``    ``return` `ans` `# Driver code``if` `__name__ ``=``=` `"__main__"``:``  ` `    ``a ``=` `[``1``, ``2``, ``6``, ``2``, ``3``,``         ``6``, ``9``, ``18``, ``3``, ``9``]``    ``n ``=` `len``(a)``    ``r ``=` `3``    ``print` `( subsequences(a, n, r))``   ` `# This code is contributed by Chitranayal`

## C#

 `// C# program to count GP``// subsequences of size 3.``using` `System;``using` `System.Collections.Generic;``class` `GFG{` `// To calculate nCr``// DP approach``static` `int` `binomialCoeff(``int` `n,``                         ``int` `k)``{``  ``int` `[]C = ``new` `int``[k + 1];` `  ``// nC0 is 1``  ``C = 1;``  ``for``(``int` `i = 1; i <= n; i++)``  ``{``    ``// Compute next row of pascal``    ``// triangle using the previous``    ``// row``    ``for``(``int` `j = Math.Min(i, k);``            ``j > 0; j--)``      ``C[j] = C[j] + C[j - 1];``  ``}``  ``return` `C[k];``}` `// Returns count of G.P. subseqeunces``// with length 3 and common ratio r``static` `long` `subsequences(``int` `[]a,``                         ``int` `n, ``int` `r)``{   ``  ``// Hashing to maintain left and``  ``// right array elements to the``  ``// main count``  ``Dictionary<``int``,``             ``int``> left =``             ``new` `Dictionary<``int``,``                            ``int``>();``  ``Dictionary<``int``,``             ``int``> right =``             ``new` `Dictionary<``int``,``                            ``int``>();       ` `  ``// Stores the answer``  ``long` `ans = 0;` `  ``// Traverse through the elements``  ``for``(``int` `i = 0; i < n; i++)``    ``if` `(right.ContainsKey(a[i]))``    ``{``      ``right[a[i]]++;``    ``}``  ``else``  ``{``    ``right.Add(a[i], 1);``  ``}` `  ``// IF RATIO IS ONE``  ``if` `(r == 1)``  ``{``    ``// Traverse the count in hash``    ``foreach``(KeyValuePair<``int``,``                         ``int``> i ``in` `right)``    ``{` `      ``// Calculating nC3, where 'n' is``      ``// the number of times each number is``      ``// repeated in the input``      ``ans += binomialCoeff(i.Value, 3);``    ``}``    ``return` `ans;``  ``}` `  ``// Traverse through all elements``  ``// and find out the number of``  ``// elements as k1*k2``  ``for``(``int` `i = 0; i < n; i++)``  ``{``    ``// Keep the count of left and``    ``// right elements left is a[i]/r``    ``// and right a[i]*r``    ``long` `c1 = 0, c2 = 0;` `    ``// If the current element is``    ``// divisible by k, count elements``    ``// in left hash.``    ``if` `(a[i] % r == 0)``      ``if` `(left.ContainsKey(a[i] / r))``        ``c1 = left[a[i] / r];` `    ``// Decrease the count in right``    ``// hash``    ``if` `(right.ContainsKey(a[i]))``    ``{``      ``right[a[i]]--;       ``    ``}``    ``else``    ``{``      ``right.Add(a[i], -1);``    ``}` `    ``// Number of right elements``    ``if` `(right.ContainsKey(a[i] * r))``      ``c2 = right[a[i] * r];` `    ``// Calculate the answer``    ``ans += c1 * c2;` `    ``if` `(left.ContainsKey(a[i]))``    ``{``      ``left[a[i]]++;``    ``}``    ``else``    ``{``      ``left.Add(a[i], 1);``    ``}``// left count of a[i]``  ``}` `  ``// Returns answer``  ``return` `ans;``}` `// Driver code``public` `static` `void` `Main(String[] args)``{``  ``int` `[]a = {1, 2, 6, 2, 3,``             ``6, 9, 18, 3, 9};``  ``int` `n = a.GetLength(0);``  ``int` `r = 3;``  ``Console.Write(subsequences(a, n, r));``}``}` `// This code is contributed by shikhasingrajput`
Output:
```6

```

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up