Related Articles

Related Articles

Number of decisions to reach destination
  • Difficulty Level : Medium
  • Last Updated : 09 Nov, 2020

Given a grid which consists of 4 types of characters : ‘B’ ‘.’ ‘S’ and ‘D’. We need to reach D starting from S, at each step we can go to neighboring cells i.e. up, down, left and right. Cells having character ‘B’ are blocked i.e. at any step we can’t move to cell having ‘B’. Given grid has dots in such a way that there is only one way to reach any cell from any other cell. We need to tell how many times we need to choose our way from more than one choices i.e. decide the path to reach D.

Examples: 

Input : Grid = [".BBB.B.BB"
                ".....B.B."
                "B.B.B.BSB"
                ".DB......"]
Output : 4
In above shown grid we have to decide 4
times to reach destination at (3, 7), 
(3, 5), (1, 3) and (1, 1).  


 

We can solve this problem using DFS. In path from source to destination we can see that whenever we have more than 1 neighbors, we need to decide our path so first we do a DFS and store the path from source to the destination in terms of child-parent array and then we move from destination to source, cell by cell using parent array and at every cell where we have more than 1 neighbors we will increase our answer by 1. 



Please see below code for better understanding. 

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find decision taken to
// reach destination from source
#include <bits/stdc++.h>
using namespace std;
 
//  Utility dfs method to fill parent array
void dfs(int u, vector<int> g[], int prt[], bool visit[])
{
    visit[u] = true;
 
    //  loop over all unvisited neighbors
    for (int i = 0; i < g[u].size(); i++)
    {
        int v = g[u][i];
        if (!visit[v])
        {
            prt[v] = u;
            dfs(v, g, prt, visit);
        }
    }
}
 
// method returns decision taken to reach destination
// from source
int turnsToReachDestination(string grid[], int M)
{
    int N = grid[0].length();
 
    //  storing direction for neighbors
    int dx[] = {-1, 0, 1, 0};
    int dy[] = {0, -1, 0, 1};
 
    vector<int> g[M*N];
    bool visit[M*N] = {0};
    int prt[M*N];
    int start, dest;
 
    /*  initialize start and dest and
        store neighbours vector g
        If cell index is (i, j), then we can convert
        it to 1D as (i*N + j)  */
    for (int i = 0; i < M; i++)
    {
        for (int j = 0; j < N; j++)
        {
            if (grid[i][j] == 'D')
                dest = i*N + j;
            if (grid[i][j] == 'S')
                start = i*N + j;
 
            g[i*N + j].clear();
            if (grid[i][j] != 'B')
            {
                for (int k = 0; k < 4; k++)
                {
                    int u = i + dx[k];
                    int v = j + dy[k];
 
                    // if neighboring cell is in boundary
                    // and doesn't have 'B'
                    if (u >= 0 && u < M && v >= 0 &&
                        v < N && grid[u][v] != 'B')
                        g[i*N + j].push_back(u*N + v);
                }
            }
        }
    }
 
    //  call dfs from start and fill up parent array
    dfs(start, g, prt, visit);
 
    int curr = dest;
    int res = 0;
 
    //  loop from destination cell back to start cell
    while (curr != start)
    {
        /*  if current cell has more than 2 neighbors,
            then we need to decide our path to reach S
            from D, so increase result by 1 */
        if (g[curr].size() > 2)
            res++;
 
        curr = prt[curr];
    }
 
    return res;
}
 
//  Driver code to test above methods
int main()
{
    string grid[] =
    {
        ".BBB.B.BB",
        ".....B.B.",
        "B.B.B.BSB",
        ".DB......"
    };
    int M = sizeof(grid)/sizeof(grid[0]);
    cout << turnsToReachDestination(grid, M) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find decision taken to
// reach destination from source
import java.util.*;
 
class GFG
{
 
// Utility dfs method to fill parent array
static void dfs(int u, Vector<Integer> g[],
                int prt[], boolean visit[])
{
    visit[u] = true;
 
    // loop over all unvisited neighbors
    for (int i = 0; i < g[u].size(); i++)
    {
        int v = g[u].get(i);
        if (!visit[v])
        {
            prt[v] = u;
            dfs(v, g, prt, visit);
        }
    }
}
 
// method returns decision taken to reach destination
// from source
static int turnsToReachDestination(String grid[], int M)
{
    int N = grid[0].length();
 
    // storing direction for neighbors
    int dx[] = {-1, 0, 1, 0};
    int dy[] = {0, -1, 0, 1};
 
    Vector<Integer> []g = new Vector[M*N];
    for (int i = 0; i < M*N; i++)
        g[i] = new Vector<Integer>();
    boolean []visit = new boolean[M*N];
    int []prt = new int[M*N];
    int start = -1, dest = -1;
 
    /* initialize start and dest and
        store neighbours vector g
        If cell index is (i, j), then we can convert
        it to 1D as (i*N + j) */
    for (int i = 0; i < M; i++)
    {
        for (int j = 0; j < N; j++)
        {
            if (grid[i].charAt(j) == 'D')
                dest = i * N + j;
            if (grid[i].charAt(j) == 'S')
                start = i * N + j;
 
            g[i * N + j].clear();
            if (grid[i].charAt(j) != 'B')
            {
                for (int k = 0; k < 4; k++)
                {
                    int u = i + dx[k];
                    int v = j + dy[k];
 
                    // if neighboring cell is in boundary
                    // and doesn't have 'B'
                    if (u >= 0 && u < M && v >= 0 &&
                        v < N && grid[u].charAt(v) != 'B')
                        g[i * N + j].add(u * N + v);
                }
            }
        }
    }
 
    // call dfs from start and fill up parent array
    dfs(start, g, prt, visit);
 
    int curr = dest;
    int res = 0;
 
    // loop from destination cell back to start cell
    while (curr != start)
    {
        /* if current cell has more than 2 neighbors,
            then we need to decide our path to reach S
            from D, so increase result by 1 */
        if (g[curr].size() > 2)
            res++;
 
        curr = prt[curr];
    }
 
    return res;
}
 
// Driver code
public static void main(String[] args)
{
    String grid[] =
    {
        ".BBB.B.BB",
        ".....B.B.",
        "B.B.B.BSB",
        ".DB......"
    };
    int M = grid.length;
    System.out.print(turnsToReachDestination(grid, M) +"\n");
}
}
 
// This code is contributed by Rajput-Ji

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find decision taken
# to reach destination from source
 
# Utility dfs method to fill parent array
def dfs(u, g, prt, visit):
     
    visit[u] = True
     
    # Loop over all unvisited neighbors
    for i in range(len(g[u])):
         
        v = g[u][i]
         
        if (not visit[v]):
            prt[v] = u
            dfs(v, g, prt, visit)
 
# Method returns decision taken to
# reach destination from source
def turnsToReachDestination(grid, M):
     
    N = len(grid[0])
     
    # Storing direction for neighbors
    dx = [ -1, 0, 1, 0 ]
    dy = [ 0, -1, 0, 1 ]
 
    g = {}
 
    visit = [0 for i in range(M * N)]
    prt = [0 for i in range(M * N)]
     
    start = -1
    dest = -1
 
    # Initialize start and dest and
    # store neighbours vector g
    # If cell index is (i, j), then
    # we can convert
    # it to 1D as (i*N + j) 
    for i in range(M):
        for j in range(N):
            if (grid[i][j] == 'D'):
                dest = i * N + j
            if (grid[i][j] == 'S'):
                start = i * N + j
 
            if (grid[i][j] != 'B'):
                for k in range(4):
                    u = i + dx[k]
                    v = j + dy[k]
                     
                    # If neighboring cell is in
                    # boundary and doesn't have 'B'
                    if (u >= 0 and u < M and
                        v >= 0 and v < N and
                        grid[u][v] != 'B'):
                        if (i * N +j) not in g:
                            g[i * N + j] = []
                            g[i * N + j].append(u * N + v)
                        else:
                            g[i * N + j].append(u * N + v)
 
    # Call dfs from start and fill up parent array
    dfs(start, g, prt, visit)
 
    curr = dest
    res = 0
 
    # Loop from destination cell back to start cell
    while(curr != start):
         
        # If current cell has more than 2 neighbors,
        # then we need to decide our path to reach S
        # from D, so increase result by 1 */
        if (len(g[curr]) > 2):
            res += 1
             
        curr = prt[curr]
         
    return res
 
# Driver code
grid = [ ".BBB.B.BB", ".....B.B.",
         "B.B.B.BSB", ".DB......" ]
          
M = len(grid)
 
print(turnsToReachDestination(grid, M))
 
# This code is contributed by avanitrachhadiya2155

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find decision taken to
// reach destination from source
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Utility dfs method to fill parent array
static void dfs(int u, List<int> []g,
                int []prt, bool []visit)
{
    visit[u] = true;
 
    // loop over all unvisited neighbors
    for (int i = 0; i < g[u].Count; i++)
    {
        int v = g[u][i];
        if (!visit[v])
        {
            prt[v] = u;
            dfs(v, g, prt, visit);
        }
    }
}
 
// method returns decision taken to reach destination
// from source
static int turnsToReachDestination(String []grid, int M)
{
    int N = grid[0].Length;
 
    // storing direction for neighbors
    int []dx = {-1, 0, 1, 0};
    int []dy = {0, -1, 0, 1};
 
    List<int> []g = new List<int>[M*N];
    for (int i = 0; i < M*N; i++)
        g[i] = new List<int>();
    bool []visit = new bool[M*N];
    int []prt = new int[M*N];
    int start = -1, dest = -1;
 
    /* initialize start and dest and
        store neighbours vector g
        If cell index is (i, j), then we can convert
        it to 1D as (i*N + j) */
    for (int i = 0; i < M; i++)
    {
        for (int j = 0; j < N; j++)
        {
            if (grid[i][j] == 'D')
                dest = i * N + j;
            if (grid[i][j] == 'S')
                start = i * N + j;
 
            g[i * N + j].Clear();
            if (grid[i][j] != 'B')
            {
                for (int k = 0; k < 4; k++)
                {
                    int u = i + dx[k];
                    int v = j + dy[k];
 
                    // if neighboring cell is in boundary
                    // and doesn't have 'B'
                    if (u >= 0 && u < M && v >= 0 &&
                        v < N && grid[u][v] != 'B')
                        g[i * N + j].Add(u * N + v);
                }
            }
        }
    }
 
    // call dfs from start and fill up parent array
    dfs(start, g, prt, visit);
 
    int curr = dest;
    int res = 0;
 
    // loop from destination cell back to start cell
    while (curr != start)
    {
        /* if current cell has more than 2 neighbors,
            then we need to decide our path to reach S
            from D, so increase result by 1 */
        if (g[curr].Count > 2)
            res++;
 
        curr = prt[curr];
    }
 
    return res;
}
 
// Driver code
public static void Main(String[] args)
{
    String []grid =
    {
        ".BBB.B.BB",
        ".....B.B.",
        "B.B.B.BSB",
        ".DB......"
    };
    int M = grid.Length;
    Console.Write(turnsToReachDestination(grid, M) +"\n");
}
}
 
// This code is contributed by 29AjayKumar

chevron_right


Output: 

4


This article is contributed by Utkarsh Trivedi. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above. 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :