# Number of decimal numbers of length k, that are strict monotone

We call decimal number a monotone if: Write a program which takes positive number n on input and returns number of decimal numbers of length n that are strict monotone. Number can’t start with 0.

Examples :

Input : 2
Output : 36
Numbers are 12, 13, ... 19, 23
24, ... 29, .... 89.

Input : 3
Output : 84


## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Explanations of this problem follows the same rules as applied on:
Number of decimal numbers of length k, that are monotone

The only difference is that now we cannot take duplicates, so previously computed values are the one on the left and left top diagonal.

## C++

 // CPP program to count numbers of k  // digits that are strictly monotone.  #include  #include     int static const DP_s = 9;     int getNumStrictMonotone(int len)  {      // DP[i][j] is going to store monotone      // numbers of length i+1 considering      // j+1 digits (1, 2, 3, ..9)      int DP[len][DP_s];      memset(DP, 0, sizeof(DP));          // Unit length numbers      for (int i = 0; i < DP_s; ++i)           DP[i] = i + 1;             // Building dp[] in bottom up      for (int i = 1; i < len; ++i)           for (int j = 1; j < DP_s; ++j)               DP[i][j] = DP[i - 1][j - 1] + DP[i][j - 1];                     return DP[len - 1][DP_s - 1];  }     // Driver code  int main()  {      std::cout << getNumStrictMonotone(2);       return 0;  }

## Java

 // Java program to count numbers of k  // digits that are strictly monotone.  import java.io.*;  import java.util.*;     class GFG {         static int DP_s = 9;             static int getNumStrictMonotone(int len)       {          // DP[i][j] is going to store monotone          // numbers of length i+1 considering          // j+1 digits (1, 2, 3, ..9)          int[][] DP = new int[len][DP_s];                 // Unit length numbers          for (int i = 0; i < DP_s; ++i)          DP[i] = i + 1;                 // Building dp[] in bottom up          for (int i = 1; i < len; ++i)               for (int j = 1; j < DP_s; ++j)                  DP[i][j] = DP[i - 1][j - 1]                                + DP[i][j - 1];                 return DP[len - 1][DP_s - 1];      }      public static void main(String[] args)       {          int n = 2;          System.out.println(getNumStrictMonotone(n));      }  }     // This code is contributed by Gitanjali.

## Python3

 # Python3 program to count numbers of k  # digits that are strictly monotone.     DP_s = 9    def getNumStrictMonotone(ln):             # DP[i][j] is going to store monotone      # numbers of length i+1 considering      # j+1 digits (1, 2, 3, ..9)      DP = [ * DP_s for _ in range(ln)]         # Unit length numbers      for i in range(DP_s):          DP[i] = i + 1         # Building dp[] in bottom up      for i in range(1, ln):                     for j in range(1, DP_s):                             DP[i][j] = DP[i - 1][j - 1] + DP[i][j - 1]                  return DP[ln - 1][DP_s - 1]     # Driver code  print(getNumStrictMonotone(2))        # This code is contributed by Ansu Kumari.

## C#

 // C# program to count numbers of k  // digits that are strictly monotone.  using System;     class GFG {         static int DP_s = 9;             static int getNumStrictMonotone(int len)       {          // DP[i][j] is going to store monotone          // numbers of length i+1 considering          // j+1 digits (1, 2, 3, ..9)          int[,] DP = new int[len,DP_s];                 // Unit length numbers          for (int i = 0; i < DP_s; ++i)          DP[0,i] = i + 1;                 // Building dp[] in bottom up          for (int i = 1; i < len; ++i)              for (int j = 1; j < DP_s; ++j)                  DP[i,j] = DP[i - 1,j - 1]                               + DP[i,j - 1];                 return DP[len - 1,DP_s - 1];      }             // Driver code      public static void Main()       {          int n = 2;          Console.WriteLine(getNumStrictMonotone(n));      }  }     // This code is contributed by vt_m.

## PHP

 

Output :

36


My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : manishshaw1