Open In App
Related Articles

Number of common base strings for two strings

Improve Article
Improve
Save Article
Save
Like Article
Like

Given two strings s1 and s2, we need to find number of common base strings of two. A substring of a string s is called base string if repeated concatenation of the substring results in s.

Examples:  

Input : s1 = "pqrspqrs"
        s2 = "pqrspqrspqrspqrs"
Output : 2
The two common base strings are "pqrs"
and "pqrspqrs".

Input: s1 = "bbb"
       s2 = "bb"
Output: 1
There is only one common base string
which is "b". 

The maximum possible length of common base string is equal to length of smaller of two strings. So we run a loop that considers all prefixes of smaller string and for every prefix checks if it is a common base.

Below is the implementation of the following approach  

C++




// CPP program to count common base strings
// of s1 and s2.
#include <bits/stdc++.h>
using namespace std;
 
// function for finding common divisor .
bool isCommonBase(string base, string s1, 
                               string s2)
{
    // Checking if 'base' is base string 
    // of 's1'
    for (int j = 0; j < s1.length(); ++j)
        if (base[j % base.length()] != s1[j])
            return false;
     
    // Checking if 'base' is base string
    // of 's2'
    for (int j = 0; j < s2.length(); ++j)
        if (base[j % base.length()] != s2[j])
            return false;   
 
    return true;
}
 
int countCommonBases(string s1, string s2) {
   int n1 = s1.length(), n2 = s2.length();
   int count = 0;
   for (int i=1; i<=min(n1, n2); i++)
   {
       string base = s1.substr(0, i);
       if (isCommonBase(base, s1, s2))
           count++;
   }
   return count;
}
 
// Driver code
int main()
{
    string s1 = "pqrspqrs";
    string s2 = "pqrspqrspqrspqrs";
    cout << countCommonBases(s1, s2) << endl;
    return 0;
}


Java




// Java program to count common
// base strings of s1 and s2.
 
class GFG
{
 
// function for finding common divisor
static boolean isCommonBase(String base,
                            String s1,
                            String s2)
{
    // Checking if 'base' is base
    // String of 's1'
    for (int j = 0; j < s1.length(); ++j)
    {
        if (base.charAt(j %
            base.length()) != s1.charAt(j))
        {
            return false;
        }
    }
 
    // Checking if 'base' is base
    // String of 's2'
    for (int j = 0; j < s2.length(); ++j)
    {
        if (base.charAt(j %
            base.length()) != s2.charAt(j))
        {
            return false;
        }
    }
 
    return true;
}
 
static int countCommonBases(String s1,
                            String s2)
{
    int n1 = s1.length(),
        n2 = s2.length();
    int count = 0;
    for (int i = 1; i <= Math.min(n1, n2); i++)
    {
        String base = s1.substring(0, i);
        if (isCommonBase(base, s1, s2))
        {
            count++;
        }
    }
    return count;
}
 
// Driver code
public static void main(String[] args)
{
    String s1 = "pqrspqrs";
    String s2 = "pqrspqrspqrspqrs";
 
    System.out.println(countCommonBases(s1, s2));
}
}
 
// This code is contributed by Rajput-JI


Python 3




# Python 3 program to count common
# base strings of s1 and s2.
 
# function for finding common divisor .
def isCommonBase(base, s1, s2):
 
    # Checking if 'base' is base
    # string of 's1'
    for j in range(len(s1)):
        if (base[j % len(base)] != s1[j]):
            return False
     
    # Checking if 'base' is base
    # string of 's2'
    for j in range(len(s2)):
        if (base[j % len( base)] != s2[j]):
            return False
 
    return True
 
def countCommonBases(s1, s2):
    n1 = len(s1)
    n2 = len(s2)
    count = 0
    for i in range(1, min(n1, n2) + 1):
        base = s1[0: i]
        if (isCommonBase(base, s1, s2)):
            count += 1
         
    return count
 
# Driver code
if __name__ == "__main__":
     
    s1 = "pqrspqrs"
    s2 = "pqrspqrspqrspqrs"
    print(countCommonBases(s1, s2))
 
# This code is contributed by ita_c


C#




// C# program to count common base
// strings of s1 and s2.
using System;
 
class GFG
{
// function for finding common divisor
static bool isCommonBase(String Base,
                         String s1,
                         String s2)
{
    // Checking if 'base' is base
    // String of 's1'
    for (int j = 0; j < s1.Length; ++j)
    {
        if (Base[j % Base.Length] != s1[j])
        {
            return false;
        }
    }
 
    // Checking if 'base' is base
    // String of 's2'
    for (int j = 0; j < s2.Length; ++j)
    {
        if (Base[j % Base.Length] != s2[j])
        {
            return false;
        }
    }
 
    return true;
}
 
static int countCommonBases(String s1,
                            String s2)
{
    int n1 = s1.Length, n2 = s2.Length;
    int count = 0;
    for (int i = 1;
             i <= Math.Min(n1, n2); i++)
    {
        String Base = s1.Substring(0, i);
        if (isCommonBase(Base, s1, s2))
        {
            count++;
        }
    }
    return count;
}
 
// Driver code
public static void Main()
{
    String s1 = "pqrspqrs";
    String s2 = "pqrspqrspqrspqrs";
 
    Console.Write(countCommonBases(s1, s2));
}
}
 
// This code is contributed by Rajput-JI


PHP




<?php
// PHP program to count common base strings
// of s1 and s2.
 
// function for finding common divisor .
function isCommonBase($base,$s1, $s2)
{
    // Checking if 'base' is base string
    // of 's1'
    for ($j = 0; $j < strlen($s1); ++$j)
        if ($base[$j % strlen($base)] != $s1[$j])
            return false;
     
    // Checking if 'base' is base string
    // of 's2'
    for ($j = 0; $j < strlen($s2); ++$j)
        if ($base[$j % strlen($base)] != $s2[$j])
            return false;
 
    return true;
}
 
function countCommonBases($s1, $s2)
{
    $n1 = strlen($s1);
    $n2 = strlen($s2);
    $count = 0;
    for ($i = 1; $i <= min($n1, $n2); $i++)
    {
        $base = substr($s1,0, $i);
        if (isCommonBase($base, $s1, $s2))
            $count++;
    }
    return $count;
}
 
// Driver code
    $s1 = "pqrspqrs";
    $s2 = "pqrspqrspqrspqrs";
    echo countCommonBases($s1, $s2)."\n";
 
// This code is contributed by mits
?>


Javascript




<script>
// Javascript program to count common
// base strings of s1 and s2.
     
    // function for finding common divisor
    function isCommonBase(base,s1,s2)
    {
     
        // Checking if 'base' is base
    // String of 's1'
    for (let j = 0; j < s1.length; ++j)
    {
        if (base[j % base.length] != s1[j])
        {
            return false;
        }
    }
   
    // Checking if 'base' is base
    // String of 's2'
    for (let j = 0; j < s2.length; ++j)
    {
        if (base[j %base.length] != s2[j])
        {
            return false;
        }
    }
   
    return true;
    }
     
    function countCommonBases(s1,s2)
    {
        let n1 = s1.length,
        n2 = s2.length;
    let count = 0;
    for (let i = 1; i <= Math.min(n1, n2); i++)
    {
        let base = s1.substring(0, i);
        if (isCommonBase(base, s1, s2))
        {
            count++;
        }
    }
    return count;
    }
     
    // Driver code
    let s1 = "pqrspqrs";
    let s2 = "pqrspqrspqrspqrs";
    document.write(countCommonBases(s1, s2));
             
    // This code is contributed by rag2127
</script>


Output

2

Time Complexity: O(min(n1, n2) * (n1 + n2))
Auxiliary Space: O(min(n1, n2)), where n1 and n2 are the lengths of the given strings.


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 27 Nov, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials