Given two strings s1 and s2, we need to find number of common base strings of two. A substring of a string s is called base string if repeated concatenation of the substring results in s.
Examples:
Input : s1 = "pqrspqrs"
s2 = "pqrspqrspqrspqrs"
Output : 2
The two common base strings are "pqrs"
and "pqrspqrs".
Input: s1 = "bbb"
s2 = "bb"
Output: 1
There is only one common base string
which is "b".
The maximum possible length of common base string is equal to length of smaller of two strings. So we run a loop that considers all prefixes of smaller string and for every prefix checks if it is a common base.
Below is the implementation of the following approach
C++
#include <bits/stdc++.h>
using namespace std;
bool isCommonBase(string base, string s1,
string s2)
{
for ( int j = 0; j < s1.length(); ++j)
if (base[j % base.length()] != s1[j])
return false ;
for ( int j = 0; j < s2.length(); ++j)
if (base[j % base.length()] != s2[j])
return false ;
return true ;
}
int countCommonBases(string s1, string s2) {
int n1 = s1.length(), n2 = s2.length();
int count = 0;
for ( int i=1; i<=min(n1, n2); i++)
{
string base = s1.substr(0, i);
if (isCommonBase(base, s1, s2))
count++;
}
return count;
}
int main()
{
string s1 = "pqrspqrs" ;
string s2 = "pqrspqrspqrspqrs" ;
cout << countCommonBases(s1, s2) << endl;
return 0;
}
|
Java
class GFG
{
static boolean isCommonBase(String base,
String s1,
String s2)
{
for ( int j = 0 ; j < s1.length(); ++j)
{
if (base.charAt(j %
base.length()) != s1.charAt(j))
{
return false ;
}
}
for ( int j = 0 ; j < s2.length(); ++j)
{
if (base.charAt(j %
base.length()) != s2.charAt(j))
{
return false ;
}
}
return true ;
}
static int countCommonBases(String s1,
String s2)
{
int n1 = s1.length(),
n2 = s2.length();
int count = 0 ;
for ( int i = 1 ; i <= Math.min(n1, n2); i++)
{
String base = s1.substring( 0 , i);
if (isCommonBase(base, s1, s2))
{
count++;
}
}
return count;
}
public static void main(String[] args)
{
String s1 = "pqrspqrs" ;
String s2 = "pqrspqrspqrspqrs" ;
System.out.println(countCommonBases(s1, s2));
}
}
|
Python 3
def isCommonBase(base, s1, s2):
for j in range ( len (s1)):
if (base[j % len (base)] ! = s1[j]):
return False
for j in range ( len (s2)):
if (base[j % len ( base)] ! = s2[j]):
return False
return True
def countCommonBases(s1, s2):
n1 = len (s1)
n2 = len (s2)
count = 0
for i in range ( 1 , min (n1, n2) + 1 ):
base = s1[ 0 : i]
if (isCommonBase(base, s1, s2)):
count + = 1
return count
if __name__ = = "__main__" :
s1 = "pqrspqrs"
s2 = "pqrspqrspqrspqrs"
print (countCommonBases(s1, s2))
|
C#
using System;
class GFG
{
static bool isCommonBase(String Base,
String s1,
String s2)
{
for ( int j = 0; j < s1.Length; ++j)
{
if (Base[j % Base.Length] != s1[j])
{
return false ;
}
}
for ( int j = 0; j < s2.Length; ++j)
{
if (Base[j % Base.Length] != s2[j])
{
return false ;
}
}
return true ;
}
static int countCommonBases(String s1,
String s2)
{
int n1 = s1.Length, n2 = s2.Length;
int count = 0;
for ( int i = 1;
i <= Math.Min(n1, n2); i++)
{
String Base = s1.Substring(0, i);
if (isCommonBase(Base, s1, s2))
{
count++;
}
}
return count;
}
public static void Main()
{
String s1 = "pqrspqrs" ;
String s2 = "pqrspqrspqrspqrs" ;
Console.Write(countCommonBases(s1, s2));
}
}
|
PHP
<?php
function isCommonBase( $base , $s1 , $s2 )
{
for ( $j = 0; $j < strlen ( $s1 ); ++ $j )
if ( $base [ $j % strlen ( $base )] != $s1 [ $j ])
return false;
for ( $j = 0; $j < strlen ( $s2 ); ++ $j )
if ( $base [ $j % strlen ( $base )] != $s2 [ $j ])
return false;
return true;
}
function countCommonBases( $s1 , $s2 )
{
$n1 = strlen ( $s1 );
$n2 = strlen ( $s2 );
$count = 0;
for ( $i = 1; $i <= min( $n1 , $n2 ); $i ++)
{
$base = substr ( $s1 ,0, $i );
if (isCommonBase( $base , $s1 , $s2 ))
$count ++;
}
return $count ;
}
$s1 = "pqrspqrs" ;
$s2 = "pqrspqrspqrspqrs" ;
echo countCommonBases( $s1 , $s2 ). "\n" ;
?>
|
Javascript
<script>
function isCommonBase(base,s1,s2)
{
for (let j = 0; j < s1.length; ++j)
{
if (base[j % base.length] != s1[j])
{
return false ;
}
}
for (let j = 0; j < s2.length; ++j)
{
if (base[j %base.length] != s2[j])
{
return false ;
}
}
return true ;
}
function countCommonBases(s1,s2)
{
let n1 = s1.length,
n2 = s2.length;
let count = 0;
for (let i = 1; i <= Math.min(n1, n2); i++)
{
let base = s1.substring(0, i);
if (isCommonBase(base, s1, s2))
{
count++;
}
}
return count;
}
let s1 = "pqrspqrs" ;
let s2 = "pqrspqrspqrspqrs" ;
document.write(countCommonBases(s1, s2));
</script>
|
Time Complexity: O(min(n1, n2) * (n1 + n2))
Auxiliary Space: O(min(n1, n2)), where n1 and n2 are the lengths of the given strings.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
27 Nov, 2022
Like Article
Save Article