Skip to content
Related Articles

Related Articles

Nth Subset of the Sequence consisting of powers of K in increasing order of their Sum
  • Difficulty Level : Medium
  • Last Updated : 02 Mar, 2021

Given two integers N and K, the task is to find the Nth Subset from the sequence of subsets generated from the powers of K i.e. {1, K1, K2, K3, …..} such that the subsets are arranged in increasing order of their sum, the task is to find the Nth subset from the sequence.

Examples:

Input: N = 5, K = 3 
Output: 1 9 
Explanation: 
Sequence of subsets along with their sum are:

  • Subset = {1}, Sum = 1
  • Subset = {3}, Sum = 3
  • Subset = {1, 3}, Sum = 4
  • Subset = {9}, Sum = 9
  • Subset = {1, 9}, Sum = 10

Therefore, the subset at position 5 is {1, 9}.

Input: N = 4, K = 4 
Output: 16



Approach: 
Let’s refer to the required sequence for K = 3 given below:

From the above sequence, it can be observed that the subset {3} has position 2, the subset {9} has position 4, and the subset {27} has position 8, and so on. The subset {1, 3}, {1, 9}, {1, 27} occupies positions 3, 5, and 9 respectively. Hence, all the elements of the required Nth subset can be obtained by finding the nearest power of 2 which is smaller than or equal to N.

Illustration: 
N = 6, K = 3
1st iteration:

  1. p = log2(6) = 2
  2. 32 = 9, Subset = {9}
  3. N = 6 % 4 = 2

2nd iteration:

  1. p = log2(2) = 1
  2. 31 = 3, Subset = {3, 9}
  3. N = 2 % 2 = 0

Therefore the required subset is {3, 9}

Follow the steps below to solve the problem:

  • Calculate the nearest power of 2 which is smaller than or equal to N, say p. Therefore, p = log2N.
  • Now, the element of the subset will be Kp. Insert it into the front of the subset.
  • Update N to N % 2p.
  • Repeat the above steps until N becomes 0, and consequently print the obtained subset.

Below is the implementation of the above approach:



C++




// C++ program for the above approach
#include <bits/stdc++.h>
#include <stdio.h>
using namespace std;
#define lli long long int
 
// Function to print the
// required N-th subset
void printSubset(lli n, int k)
{
    vector<lli> answer;
    while(n > 0)
    {
 
        // Nearest power of 2<=N
        lli p = log2(n);
         
        // Now insert k^p in the answer
        answer.push_back(pow(k, p));
         
        // update n
        n %= (int)pow(2, p);
    }
 
    // Print the ans in sorted order
    reverse(answer.begin(), answer.end());
    for(auto x: answer)
    {
        cout << x << " ";
    }
}
 
// Driver Code
int main()
{
    lli n = 5;
    int k = 4;
    printSubset(n, k);
}
 
// This code is contributed by winter_soldier

Java




// Java program for above approach
import java.util.*;
import java.lang.*;
import java.io.*;
class GFG
{
 
  // Function to print the 
  // required N-th subset 
  static void printSubset(long n, int k)
  {
    ArrayList<Long> answer = new ArrayList<>();
    while(n > 0)
    {
 
      // Nearest power of 2<=N
      long p = (long)(Math.log(n) / Math.log(2));;
 
      // Now insert k^p in the answer
      answer.add((long)(Math.pow(k, p)));
 
      // update n
      n %= (int)Math.pow(2, p);
    }
 
    // Print the ans in sorted order
    Collections.sort(answer);
    for(Long x: answer)
    {
      System.out.print(x + " ");
    }
  }
 
  // Driver function
  public static void main (String[] args)
  {
    long n = 5;
    int k = 4;
    printSubset(n, k);
  }
}
 
// This code is contributed by offbeat

Python3




# Python3 program for
# the above approach
import math
 
# Function to print the
# required N-th subset
def printSubset(N, K):
    # Stores the subset
    answer = ""
    while(N > 0):
        # Nearest power of 2 <= N
        p = int(math.log(N, 2))
        # Insert K ^ p in the subset
        answer = str(K**p)+" "+answer
        # Update N
        N = N % (2**p)
         
    # Print the subset
    print(answer)
     
# Driver Code
N = 5
K = 4
printSubset(N, K)

C#




// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG {
 
  // Function to print the
  // required N-th subset
  static void printSubset(int n, int k)
  {
    List<int> answer = new List<int>();
    while(n > 0)
    {
 
      // Nearest power of 2<=N
      int p = (int)Math.Log(n,2);
 
      // Now insert k^p in the answer
      answer.Add((int)Math.Pow(k, p));
 
      // update n
      n %= (int)Math.Pow(2, p);
    }
 
    // Print the ans in sorted order
    answer.Reverse();
    foreach(int x in answer)
    {
      Console.Write(x + " ");
    }
  }
 
  // Driver code
  static void Main() {
    int n = 5;
    int k = 4;
    printSubset(n, k);
  }
}
 
// This code is contributed by divyeshrabadiya07.
Output
1 16 

Time Complexity: O(logN) 
Auxiliary Space: O(1)

Approach: 

  • Initialize count and x by 0. Also, A vector to store the elements of the subsets.
  • Do the following while n is greater than 0.
    • Set x = n & 1, for finding the last bit of the number is set or not.
    • Now Push element 3count into the subset if n is not 0.
    • Reduce the number n by two with the help of right shifting by 1 unit.
    • Increase the count value by 1.
  • Finally, elements into the array are the elements of Nth subset.

Below is the implementation of the above approach:

C++




// C++ program to print subset
// at the nth position ordered
// by the sum of the elements
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the elements of
// the subset at pos n
void printsubset(int n,int k)
{
    //  Initialize count=0 and x=0
    int count = 0, x = 0;
   
    // create a vector for
    // storing the elements
    // of subsets
    vector<int> vec;
   
    // doing until all the
    // set bits of n are used
    while (n) {
        x = n & 1;
       
        // this part is executed only
        // when the last bit is
        // set
        if (x) {
            vec.push_back(pow(k, count));
        }
       
        // right shift the bit by one position
        n = n >> 1;
       
        // incresing the count each time by one
        count++;
    }
   
    // printing the values os elements
    for (int i = 0; i < vec.size(); i++)
        cout << vec[i] << " ";
}
 
// Driver Code
int main()
{
    int n = 7,k=4;
    printsubset(n,k);
    return 0;
}
 
// This code is contributed by shivkant

Java




// Java program to print subset
// at the nth position ordered
// by the sum of the elements
import java.util.*;
import java.lang.*;
class GFG{
   
// Function to print the
// elements of the subset
// at pos n
static void printsubset(int n,
                        int k)
{
  // Initialize count=0 and x=0
  int count = 0, x = 0;
 
  // Create a vector for
  // storing the elements
  // of subsets
  ArrayList<Integer> vec =
            new ArrayList<>();
 
  // Doing until all the
  // set bits of n are used
  while (n != 0)
  {
    x = n & 1;
 
    // This part is executed only
    // when the last bit is
    // set
    if (x != 0)
    {
      vec.add((int)Math.pow(k,
                            count));
    }
 
    // Right shift the bit
    // by one position
    n = n >> 1;
 
    // Incresing the count
    // each time by one
    count++;
  }
 
  // Printing the values os elements
  for (int i = 0; i < vec.size(); i++)
    System.out.print(vec.get(i) + " ");
}
 
// Driver function
public static void main (String[] args)
{
  int n = 7, k = 4;
  printsubset(n, k);
}
}
 
// This code is contributed by offbeat

Python3




# Python3 program to print subset
# at the nth position ordered
# by the sum of the elements
import math
 
# Function to print the elements of
# the subset at pos n
def printsubset(n, k):
     
    # Initialize count=0 and x=0
    count = 0
    x = 0
 
    # Create a vector for
    # storing the elements
    # of subsets
    vec = []
 
    # Doing until all the
    # set bits of n are used
    while (n > 0):
        x = n & 1
         
        # This part is executed only
        # when the last bit is
        # set
        if (x):
            vec.append(pow(k, count))
     
        # Right shift the bit by one position
        n = n >> 1
     
        # Increasing the count each time by one
        count += 1
 
    # Printing the values os elements
    for item in vec:
        print(item, end = " ")
 
# Driver Code
n = 7
k = 4
 
printsubset(n, k)
 
# This code is contributed by Stream_Cipher

C#




// C# program to print subset
// at the nth position ordered
// by the sum of the elements
using System.Collections.Generic;
using System;
 
class GFG{
 
// Function to print the
// elements of the subset
// at pos n
static void printsubset(int n, int k)
{
     
    // Initialize count=0 and x=0
    int count = 0, x = 0;
     
    // Create a vector for
    // storing the elements
    // of subsets
    List<int> vec = new List<int>();
     
    // Doing until all the
    // set bits of n are used
    while (n != 0)
    {
        x = n & 1;
     
        // This part is executed only
        // when the last bit is
        // set
        if (x != 0)
        {
            vec.Add((int)Math.Pow(k, count));
        }
     
        // Right shift the bit
        // by one position
        n = n >> 1;
     
        // Incresing the count
        // each time by one
        count++;
    }
     
    // Printing the values os elements
    for(int i = 0; i < vec.Count; i++)
        Console.Write(vec[i] + " ");
}
 
// Driver code
public static void Main ()
{
    int n = 7, k = 4;
     
    printsubset(n, k);
}
}
 
// This code is contributed by Stream_Cipher

 
 

Output
1 4 16 

 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :