# Nth number in a set of multiples of A , B or C

Given four integers **N**, **A**, **B**, and **C**. The task is to print the **N ^{th}** number in the set containing the multiples of

**A**,

**B**, or

**C**.

**Examples:**

Input:A = 2, B = 3, C = 5, N = 8Output:10

2, 3, 4, 5, 6, 8, 9,10, 12, 14, …Input:A = 2, B = 3, C = 5, N = 100Output:136

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the

DSA Self Paced Courseat a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please referComplete Interview Preparation Course.In case you wish to attend

live classeswith experts, please referDSA Live Classes for Working ProfessionalsandCompetitive Programming Live for Students.

**Naive approach:** Start traversing from **1** until we find the **N ^{th}** element which is divisible by either

**A**,

**B**, or

**C**.

**Efficient approach:**Given a number, we can find the count of the divisors of either

**A**,

**B**or

**C**. Now, binary search can be used to find the

**N**number which is divisible by either

^{th}**A**,

**B**, or

**C**.

So, if the number is num then

**count = (num/A) + (num/B) + (num/C) – (num/lcm(A, B)) – (num/lcm(C, B)) – (num/lcm(A, C)) – (num/lcm(A, B, C))**

Below is the implementation of the above approach:

## C++

`// C++ program to find nth term` `// divisible by a, b or c` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to return` `// gcd of a and b` `int` `gcd(` `int` `a, ` `int` `b)` `{` ` ` `if` `(a == 0)` ` ` `return` `b;` ` ` `return` `gcd(b % a, a);` `}` `// Function to return the count of integers` `// from the range [1, num] which are` `// divisible by either a, b or c` `long` `divTermCount(` `long` `a, ` `long` `b, ` `long` `c, ` `long` `num)` `{` ` ` `// Calculate the number of terms divisible by a, b` ` ` `// and c then remove the terms which are divisible` ` ` `// by both (a, b) or (b, c) or (c, a) and then` ` ` `// add the numbers which are divisible by a, b and c` ` ` `return` `((num / a) + (num / b) + (num / c)` ` ` `- (num / ((a * b) / gcd(a, b)))` ` ` `- (num / ((c * b) / gcd(c, b)))` ` ` `- (num / ((a * c) / gcd(a, c)))` ` ` `+ (num / ((((a*b)/gcd(a, b))* c) / gcd(((a*b)/gcd(a, b)), c))));` `}` `// Function for binary search to find the` `// nth term divisible by a, b or c` `int` `findNthTerm(` `int` `a, ` `int` `b, ` `int` `c, ` `long` `n)` `{` ` ` `// Set low to 1 and high to LONG_MAX` ` ` `long` `low = 1, high = LONG_MAX, mid;` ` ` `while` `(low < high) {` ` ` `mid = low + (high - low) / 2;` ` ` `// If the current term is less than` ` ` `// n then we need to increase low` ` ` `// to mid + 1` ` ` `if` `(divTermCount(a, b, c, mid) < n)` ` ` `low = mid + 1;` ` ` `// If current term is greater than equal to` ` ` `// n then high = mid` ` ` `else` ` ` `high = mid;` ` ` `}` ` ` `return` `low;` `}` `// Driver code` `int` `main()` `{` ` ` `long` `a = 2, b = 3, c = 5, n = 100;` ` ` `cout << findNthTerm(a, b, c, n);` ` ` `return` `0;` `}` |

## Java

`// Java program to find nth term` `// divisible by a, b or c` `class` `GFG` `{` ` ` `// Function to return` ` ` `// gcd of a and b` ` ` `static` `long` `gcd(` `long` `a, ` `long` `b)` ` ` `{` ` ` `if` `(a == ` `0` `)` ` ` `{` ` ` `return` `b;` ` ` `}` ` ` `return` `gcd(b % a, a);` ` ` `}` ` ` `// Function to return the count of integers` ` ` `// from the range [1, num] which are` ` ` `// divisible by either a, b or c` ` ` `static` `long` `divTermCount(` `long` `a, ` `long` `b,` ` ` `long` `c, ` `long` `num)` ` ` `{` ` ` `// Calculate the number of terms divisible by a, b` ` ` `// and c then remove the terms which are divisible` ` ` `// by both (a, b) or (b, c) or (c, a) and then` ` ` `// add the numbers which are divisible by a, b and c` ` ` `return` `((num / a) + (num / b) + (num / c) -` ` ` `(num / ((a * b) / gcd(a, b))) -` ` ` `(num / ((c * b) / gcd(c, b))) -` ` ` `(num / ((a * c) / gcd(a, c))) +` ` ` `(num / ((a * b * c) / gcd(gcd(a, b), c))));` ` ` `}` ` ` `// Function for binary search to find the` ` ` `// nth term divisible by a, b or c` ` ` `static` `long` `findNthTerm(` `int` `a, ` `int` `b, ` `int` `c, ` `long` `n)` ` ` `{` ` ` ` ` `// Set low to 1 and high to LONG_MAX` ` ` `long` `low = ` `1` `, high = Long.MAX_VALUE, mid;` ` ` `while` `(low < high)` ` ` `{` ` ` `mid = low + (high - low) / ` `2` `;` ` ` `// If the current term is less than` ` ` `// n then we need to increase low` ` ` `// to mid + 1` ` ` `if` `(divTermCount(a, b, c, mid) < n)` ` ` `{` ` ` `low = mid + ` `1` `;` ` ` `}` ` ` ` ` `// If current term is greater than equal to` ` ` `// n then high = mid` ` ` `else` ` ` `{` ` ` `high = mid;` ` ` `}` ` ` `}` ` ` `return` `low;` ` ` `}` ` ` `// Driver code` ` ` `public` `static` `void` `main(String args[])` ` ` `{` ` ` `int` `a = ` `2` `, b = ` `3` `, c = ` `5` `, n = ` `100` `;` ` ` `System.out.println(findNthTerm(a, b, c, n));` ` ` `}` `}` `// This code is contributed by 29AjayKumar` |

## Python3

`# Python3 program to find nth term` `# divisible by a, b or c` `import` `sys` `# Function to return gcd of a and b` `def` `gcd(a, b):` ` ` `if` `(a ` `=` `=` `0` `):` ` ` `return` `b;` ` ` `return` `gcd(b ` `%` `a, a);` `# Function to return the count of integers` `# from the range [1, num] which are` `# divisible by either a, b or c` `def` `divTermCount(a, b, c, num):` ` ` ` ` `# Calculate the number of terms divisible by a, b` ` ` `# and c then remove the terms which are divisible` ` ` `# by both (a, b) or (b, c) or (c, a) and then` ` ` `# add the numbers which are divisible by a, b and c` ` ` `return` `((num ` `/` `a) ` `+` `(num ` `/` `b) ` `+` `(num ` `/` `c) ` `-` ` ` `(num ` `/` `((a ` `*` `b) ` `/` `gcd(a, b))) ` `-` ` ` `(num ` `/` `((c ` `*` `b) ` `/` `gcd(c, b))) ` `-` ` ` `(num ` `/` `((a ` `*` `c) ` `/` `gcd(a, c))) ` `+` ` ` `(num ` `/` `((a ` `*` `b ` `*` `c) ` `/` `gcd(gcd(a, b), c))));` `# Function for binary search to find the` `# nth term divisible by a, b or c` `def` `findNthTerm(a, b, c, n):` ` ` `# Set low to 1 and high to LONG_MAX` ` ` `low ` `=` `1` `; high ` `=` `sys.maxsize; mid ` `=` `0` `;` ` ` `while` `(low < high):` ` ` `mid ` `=` `low ` `+` `(high ` `-` `low) ` `/` `2` `;` ` ` `# If the current term is less than` ` ` `# n then we need to increase low` ` ` `# to mid + 1` ` ` `if` `(divTermCount(a, b, c, mid) < n):` ` ` `low ` `=` `mid ` `+` `1` `;` ` ` `# If current term is greater than equal to` ` ` `# n then high = mid` ` ` `else` `:` ` ` `high ` `=` `mid;` ` ` ` ` `return` `int` `(low);` `# Driver code` `a ` `=` `2` `; b ` `=` `3` `; c ` `=` `5` `; n ` `=` `100` `;` `print` `(findNthTerm(a, b, c, n));` `# This code is contributed by 29AjayKumar` |

## C#

`// C# program to find nth term` `// divisible by a, b or c` `using` `System;` `class` `GFG` `{` ` ` `// Function to return` ` ` `// gcd of a and b` ` ` `static` `long` `gcd(` `long` `a, ` `long` `b)` ` ` `{` ` ` `if` `(a == 0)` ` ` `{` ` ` `return` `b;` ` ` `}` ` ` `return` `gcd(b % a, a);` ` ` `}` ` ` `// Function to return the count of integers` ` ` `// from the range [1, num] which are` ` ` `// divisible by either a, b or c` ` ` `static` `long` `divTermCount(` `long` `a, ` `long` `b,` ` ` `long` `c, ` `long` `num)` ` ` `{` ` ` `// Calculate the number of terms divisible by a, b` ` ` `// and c then remove the terms which are divisible` ` ` `// by both (a, b) or (b, c) or (c, a) and then` ` ` `// add the numbers which are divisible by a, b and c` ` ` `return` `((num / a) + (num / b) + (num / c) -` ` ` `(num / ((a * b) / gcd(a, b))) -` ` ` `(num / ((c * b) / gcd(c, b))) -` ` ` `(num / ((a * c) / gcd(a, c))) +` ` ` `(num / ((a * b * c) / gcd(gcd(a, b), c))));` ` ` `}` ` ` `// Function for binary search to find the` ` ` `// nth term divisible by a, b or c` ` ` `static` `long` `findNthTerm(` `int` `a, ` `int` `b,` ` ` `int` `c, ` `long` `n)` ` ` `{` ` ` ` ` `// Set low to 1 and high to LONG_MAX` ` ` `long` `low = 1, high = ` `long` `.MaxValue, mid;` ` ` `while` `(low < high)` ` ` `{` ` ` `mid = low + (high - low) / 2;` ` ` `// If the current term is less than` ` ` `// n then we need to increase low` ` ` `// to mid + 1` ` ` `if` `(divTermCount(a, b, c, mid) < n)` ` ` `{` ` ` `low = mid + 1;` ` ` `}` ` ` ` ` `// If current term is greater than equal to` ` ` `// n then high = mid` ` ` `else` ` ` `{` ` ` `high = mid;` ` ` `}` ` ` `}` ` ` `return` `low;` ` ` `}` ` ` `// Driver code` ` ` `public` `static` `void` `Main(String []args)` ` ` `{` ` ` `int` `a = 2, b = 3, c = 5, n = 100;` ` ` `Console.WriteLine(findNthTerm(a, b, c, n));` ` ` `}` `}` `// This code is contributed by PrinciRaj1992` |

## Javascript

`<script>` `// Javascript program to find nth term` `// divisible by a, b or c` `// Function to return` `// gcd of a and b` `function` `gcd( a, b)` `{` ` ` `if` `(a == 0)` ` ` `return` `b;` ` ` `return` `gcd(b % a, a);` `}` `// Function to return the count of integers` `// from the range [1, num] which are` `// divisible by either a, b or c` `function` `divTermCount( a, b, c, num)` `{` ` ` `// Calculate the number of terms divisible by a, b` ` ` `// and c then remove the terms which are divisible` ` ` `// by both (a, b) or (b, c) or (c, a) and then` ` ` `// add the numbers which are divisible by a, b and c` ` ` `return` `parseInt(((num / a) + (num / b) + (num / c)` ` ` `- (num / ((a * b) / gcd(a, b)))` ` ` `- (num / ((c * b) / gcd(c, b)))` ` ` `- (num / ((a * c) / gcd(a, c)))` ` ` `+ (num / ((((a*b)/gcd(a, b))* c)/` ` ` `gcd(((a*b)/gcd(a, b)), c)))));` `}` `// Function for binary search to find the` `// nth term divisible by a, b or c` `function` `findNthTerm( a, b, c, n)` `{` ` ` `// Set low to 1 and high to LONG_MAX` ` ` `var` `low = 1, high = Number.MAX_SAFE_INTEGER , mid;` ` ` `while` `(low < high) {` ` ` `mid = low + (high - low) / 2;` ` ` `// If the current term is less than` ` ` `// n then we need to increase low` ` ` `// to mid + 1` ` ` `if` `(divTermCount(a, b, c, mid) < n)` ` ` `low = mid + 1;` ` ` `// If current term is greater than equal to` ` ` `// n then high = mid` ` ` `else` ` ` `high = mid;` ` ` `}` ` ` `return` `low;` `}` `var` `a = 2, b = 3, c = 5, n = 100;` `document.write(parseInt(findNthTerm(a, b, c, n)));` `// This code is contributed by SoumikMondal` `</script>` |

**Output:**

136