Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Nth number in a set of multiples of A , B or C

  • Last Updated : 03 May, 2021

Given four integers N, A, B, and C. The task is to print the Nth number in the set containing the multiples of A, B, or C
Examples: 
 

Input: A = 2, B = 3, C = 5, N = 8 
Output: 10 
2, 3, 4, 5, 6, 8, 9, 10, 12, 14, …
Input: A = 2, B = 3, C = 5, N = 100 
Output: 136 
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

 

Naive approach: Start traversing from 1 until we find the Nth element which is divisible by either A, B, or C.
Efficient approach: Given a number, we can find the count of the divisors of either A, B or C. Now, binary search can be used to find the Nth number which is divisible by either A, B, or C.
So, if the number is num then 
count = (num/A) + (num/B) + (num/C) – (num/lcm(A, B)) – (num/lcm(C, B)) – (num/lcm(A, C)) – (num/lcm(A, B, C))
Below is the implementation of the above approach: 
 

C++




// C++ program to find nth term
// divisible by a, b or c
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to return
// gcd of a and b
int gcd(int a, int b)
{
    if (a == 0)
        return b;
 
    return gcd(b % a, a);
}
 
// Function to return the count of integers
// from the range [1, num] which are
// divisible by either a, b or c
long divTermCount(long a, long b, long c, long num)
{
    // Calculate the number of terms divisible by a, b
    // and c then remove the terms which are divisible
    // by both (a, b) or (b, c) or (c, a) and then
    // add the numbers which are divisible by a, b and c
    return ((num / a) + (num / b) + (num / c)
            - (num / ((a * b) / gcd(a, b)))
            - (num / ((c * b) / gcd(c, b)))
            - (num / ((a * c) / gcd(a, c)))
            + (num / ((((a*b)/gcd(a, b))* c) / gcd(((a*b)/gcd(a, b)), c))));
}
 
// Function for binary search to find the
// nth term divisible by a, b or c
int findNthTerm(int a, int b, int c, long n)
{
    // Set low to 1 and high to LONG_MAX
    long low = 1, high = LONG_MAX, mid;
 
    while (low < high) {
        mid = low + (high - low) / 2;
 
        // If the current term is less than
        // n then we need to increase low
        // to mid + 1
        if (divTermCount(a, b, c, mid) < n)
            low = mid + 1;
 
        // If current term is greater than equal to
        // n then high = mid
        else
            high = mid;
    }
 
    return low;
}
 
// Driver code
int main()
{
    long a = 2, b = 3, c = 5, n = 100;
 
    cout << findNthTerm(a, b, c, n);
 
    return 0;
}

Java




// Java program to find nth term
// divisible by a, b or c
class GFG
{
 
    // Function to return
    // gcd of a and b
    static long gcd(long a, long b)
    {
        if (a == 0)
        {
            return b;
        }
        return gcd(b % a, a);
    }
 
    // Function to return the count of integers
    // from the range [1, num] which are
    // divisible by either a, b or c
    static long divTermCount(long a, long b,
                             long c, long num)
    {
        // Calculate the number of terms divisible by a, b
        // and c then remove the terms which are divisible
        // by both (a, b) or (b, c) or (c, a) and then
        // add the numbers which are divisible by a, b and c
        return ((num / a) + (num / b) + (num / c) -
                (num / ((a * b) / gcd(a, b))) -
                (num / ((c * b) / gcd(c, b))) -
                (num / ((a * c) / gcd(a, c))) +
                (num / ((a * b * c) / gcd(gcd(a, b), c))));
    }
 
    // Function for binary search to find the
    // nth term divisible by a, b or c
    static long findNthTerm(int a, int b, int c, long n)
    {
         
        // Set low to 1 and high to LONG_MAX
        long low = 1, high = Long.MAX_VALUE, mid;
 
        while (low < high)
        {
            mid = low + (high - low) / 2;
 
            // If the current term is less than
            // n then we need to increase low
            // to mid + 1
            if (divTermCount(a, b, c, mid) < n)
            {
                low = mid + 1;
            }
             
            // If current term is greater than equal to
            // n then high = mid
            else
            {
                high = mid;
            }
        }
        return low;
    }
 
    // Driver code
    public static void main(String args[])
    {
        int a = 2, b = 3, c = 5, n = 100;
 
        System.out.println(findNthTerm(a, b, c, n));
    }
}
 
// This code is contributed by 29AjayKumar

Python3




# Python3 program to find nth term
# divisible by a, b or c
import sys
 
# Function to return gcd of a and b
def gcd(a, b):
 
    if (a == 0):
        return b;
 
    return gcd(b % a, a);
 
# Function to return the count of integers
# from the range [1, num] which are
# divisible by either a, b or c
def divTermCount(a, b, c, num):
     
    # Calculate the number of terms divisible by a, b
    # and c then remove the terms which are divisible
    # by both (a, b) or (b, c) or (c, a) and then
    # add the numbers which are divisible by a, b and c
    return ((num / a) + (num / b) + (num / c) -
                (num / ((a * b) / gcd(a, b))) -
                (num / ((c * b) / gcd(c, b))) -
                (num / ((a * c) / gcd(a, c))) +
                (num / ((a * b * c) / gcd(gcd(a, b), c))));
 
# Function for binary search to find the
# nth term divisible by a, b or c
def findNthTerm(a, b, c, n):
 
    # Set low to 1 and high to LONG_MAX
    low = 1; high = sys.maxsize; mid = 0;
 
    while (low < high):
        mid = low + (high - low) / 2;
 
        # If the current term is less than
        # n then we need to increase low
        # to mid + 1
        if (divTermCount(a, b, c, mid) < n):
            low = mid + 1;
 
        # If current term is greater than equal to
        # n then high = mid
        else:
            high = mid;
     
    return int(low);
 
# Driver code
a = 2; b = 3; c = 5; n = 100;
 
print(findNthTerm(a, b, c, n));
 
# This code is contributed by 29AjayKumar

C#




// C# program to find nth term
// divisible by a, b or c
using System;
 
class GFG
{
 
    // Function to return
    // gcd of a and b
    static long gcd(long a, long b)
    {
        if (a == 0)
        {
            return b;
        }
        return gcd(b % a, a);
    }
 
    // Function to return the count of integers
    // from the range [1, num] which are
    // divisible by either a, b or c
    static long divTermCount(long a, long b,
                             long c, long num)
    {
        // Calculate the number of terms divisible by a, b
        // and c then remove the terms which are divisible
        // by both (a, b) or (b, c) or (c, a) and then
        // add the numbers which are divisible by a, b and c
        return ((num / a) + (num / b) + (num / c) -
                (num / ((a * b) / gcd(a, b))) -
                (num / ((c * b) / gcd(c, b))) -
                (num / ((a * c) / gcd(a, c))) +
                (num / ((a * b * c) / gcd(gcd(a, b), c))));
    }
 
    // Function for binary search to find the
    // nth term divisible by a, b or c
    static long findNthTerm(int a, int b,
                            int c, long n)
    {
         
        // Set low to 1 and high to LONG_MAX
        long low = 1, high = long.MaxValue, mid;
 
        while (low < high)
        {
            mid = low + (high - low) / 2;
 
            // If the current term is less than
            // n then we need to increase low
            // to mid + 1
            if (divTermCount(a, b, c, mid) < n)
            {
                low = mid + 1;
            }
             
            // If current term is greater than equal to
            // n then high = mid
            else
            {
                high = mid;
            }
        }
        return low;
    }
 
    // Driver code
    public static void Main(String []args)
    {
        int a = 2, b = 3, c = 5, n = 100;
 
        Console.WriteLine(findNthTerm(a, b, c, n));
    }
}
 
// This code is contributed by PrinciRaj1992

Javascript




<script>
 
// Javascript program to find nth term
// divisible by a, b or c
 
// Function to return
// gcd of a and b
function gcd( a,  b)
{
    if (a == 0)
        return b;
 
    return gcd(b % a, a);
}
 
// Function to return the count of integers
// from the range [1, num] which are
// divisible by either a, b or c
function divTermCount( a,  b,  c,  num)
{
    // Calculate the number of terms divisible by a, b
    // and c then remove the terms which are divisible
    // by both (a, b) or (b, c) or (c, a) and then
    // add the numbers which are divisible by a, b and c
    return parseInt(((num / a) + (num / b) + (num / c)
            - (num / ((a * b) / gcd(a, b)))
            - (num / ((c * b) / gcd(c, b)))
            - (num / ((a * c) / gcd(a, c)))
            + (num / ((((a*b)/gcd(a, b))* c)/
            gcd(((a*b)/gcd(a, b)), c)))));
}
 
// Function for binary search to find the
// nth term divisible by a, b or c
function findNthTerm( a,  b,  c,  n)
{
    // Set low to 1 and high to LONG_MAX
     var low = 1, high = Number.MAX_SAFE_INTEGER , mid;
 
    while (low < high) {
        mid = low + (high - low) / 2;
 
        // If the current term is less than
        // n then we need to increase low
        // to mid + 1
        if (divTermCount(a, b, c, mid) < n)
            low = mid + 1;
 
        // If current term is greater than equal to
        // n then high = mid
        else
            high = mid;
    }
 
    return low;
}
 
var a = 2, b = 3, c = 5, n = 100;
document.write(parseInt(findNthTerm(a, b, c, n)));
 
 
// This code is contributed by SoumikMondal
 
</script>
Output: 
136

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!