# NPDA for accepting the language L = {a^{n}b^{(2n)} | n>=1} U {a^{n}b^{n} | n>=1}

Prerequisite – Pushdown automata, Pushdown automata acceptance by final state**Problem –** Design a non deterministic PDA for accepting the language L = { : n>=1} U { : n>=1}, i.e.,

L = {abb, aabbbb, aaabbbbbb, aaaabbbbbbbb, ......} U {ab, aabb, aaabbb, aaaabbbb, ......}

In each string, the number of a’s are followed by double number of b’s or the number of a’s are followed by equal number of b’s.

**Explanation –**

Here, we need to maintain the order of a’s and b’s.That is, all the a’s are are coming first and then all the b’s are coming. Thus, we need a stack along with the state diagram. The count of a’s and b’s is maintained by the stack.We will take 2 stack alphabets:

= { a, z }

Where,

= set of all the stack alphabet

z = stack start symbol

**Approach used in the construction of PDA –**

In designing a NPDA, for every ‘a’ comes before ‘b’. If ‘b’ comes then

- For : Whenever ‘a’ comes, push it in stack and if ‘a’ comes again then also push it in the stack.
- For : Whenever ‘a’ comes, push ‘a’ two time in stack and if ‘a’ comes again then do the same.

When ‘b’ comes (remember b comes after ‘a’) then pop one ‘a’ from the stack each time.

So that the stack becomes empty.If stack is empty then we can say that the string is accepted by the PDA.

**Stack transition functions –**

(q0, a, z) (q1, az) (q0, a, z) (q3, aaz) (q1, a, a) (q1, aa) (q1, b, a) (q2, ) (q2, b, a) (q2, ) (q2, , z) (qf1, z) (q3 a, a) (q3, aaa) (q3, b, a) (q4, ) (q4, b, a) (q4, ) (q4, , z) (qf2, z)

Where, q0 = Initial state

qf1, qf2 = Final state

= indicates pop operation

So, this is our required non deterministic PDA for accepting the language L ={ : n>=1} U { : n>=1}.

Attention reader! Don’t stop learning now. Practice GATE exam well before the actual exam with the subject-wise and overall quizzes available in **GATE Test Series Course**.

Learn all **GATE CS concepts with Free Live Classes** on our youtube channel.