np.nanmax() in Python

numpy.nanmax()function is used to returns maximum value of an array or along any specific mentioned axis of the array, ignoring any Nan value.

Syntax : numpy.nanmax(arr, axis=None, out=None, keepdims = no value)

Parameters :
arr : Input array.
axis : Axis along which we want the max value. Otherwise, it will consider arr to be flattened(works on all the axis)axis = 0 means along the column
and axis = 1 means working along the row.
out : Different array in which we want to place the result. The array must have same dimensions as expected output.
keepdims : If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original a.



Return :maximum array value(a scalar value if axis is none)or array with maximum value along specified axis.

Code #1 : Working

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python Program illustrating 
# numpy.nanmax() method 
    
import numpy as np
    
# 1D array 
arr = [1, 2, 7, 0, np.nan]
print("arr : ", arr) 
print("max of arr : ", np.amax(arr))
  
# nanmax ignores NaN values. 
print("nanmax of arr : ", np.nanmax(arr))
  

chevron_right


Output :

arr :  [1, 2, 7, 0, nan]
max of arr :  nan
nanmax of arr :  7.0

 
Code #2 :

filter_none

edit
close

play_arrow

link
brightness_4
code

import numpy as np
  
# 2D array 
arr = [[np.nan, 17, 12, 33, 44],  
       [15, 6, 27, 8, 19]] 
print("\narr : \n", arr) 
     
# maximum of the flattened array 
print("\nmax of arr, axis = None : ", np.nanmax(arr)) 
     
# maximum along the first axis 
# axis 0 means vertical 
print("max of arr, axis = 0 : ", np.nanmax(arr, axis = 0)) 
     
# maximum along the second axis 
# axis 1 means horizontal 
print("max of arr, axis = 1 : ", np.nanmax(arr, axis = 1)) 

chevron_right


Output :

arr : 
 [[nan, 17, 12, 33, 44], [15, 6, 27, 8, 19]]

max of arr, axis = None :  44.0
max of arr, axis = 0 :  [15. 17. 27. 33. 44.]
max of arr, axis = 1 :  [44. 27.]

 
Code #3 :

filter_none

edit
close

play_arrow

link
brightness_4
code

import numpy as np
  
arr1 = np.arange(5
print("Initial arr1 : ", arr1)
   
# using out parameter
np.nanmax(arr, axis = 0, out = arr1)
   
print("Changed arr1(having results) : ", arr1)  

chevron_right


Output :

Initial arr1 :  [0 1 2 3 4]
Changed arr1(having results) :  [15 17 27 33 44]


My Personal Notes arrow_drop_up

Aspire to Inspire before I expire

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.