# np.nanmax() in Python

`numpy.nanmax()`function is used to returns maximum value of an array or along any specific mentioned axis of the array, ignoring any Nan value.

Syntax : numpy.nanmax(arr, axis=None, out=None, keepdims = no value)

Parameters :
arr : Input array.
axis : Axis along which we want the max value. Otherwise, it will consider arr to be flattened(works on all the axis)axis = 0 means along the column
and axis = 1 means working along the row.
out : Different array in which we want to place the result. The array must have same dimensions as expected output.
keepdims : If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original a.

Return :maximum array value(a scalar value if axis is none)or array with maximum value along specified axis.

Code #1 : Working

 `# Python Program illustrating  ` `# numpy.nanmax() method  ` `   `  `import` `numpy as np ` `   `  `# 1D array  ` `arr ``=` `[``1``, ``2``, ``7``, ``0``, np.nan] ` `print``(``"arr : "``, arr)  ` `print``(``"max of arr : "``, np.amax(arr)) ` ` `  `# nanmax ignores NaN values.  ` `print``(``"nanmax of arr : "``, np.nanmax(arr)) ` ` `

Output :

```arr :  [1, 2, 7, 0, nan]
max of arr :  nan
nanmax of arr :  7.0
```

Code #2 :

 `import` `numpy as np ` ` `  `# 2D array  ` `arr ``=` `[[np.nan, ``17``, ``12``, ``33``, ``44``],   ` `       ``[``15``, ``6``, ``27``, ``8``, ``19``]]  ` `print``(``"\narr : \n"``, arr)  ` `    `  `# maximum of the flattened array  ` `print``(``"\nmax of arr, axis = None : "``, np.nanmax(arr))  ` `    `  `# maximum along the first axis  ` `# axis 0 means vertical  ` `print``(``"max of arr, axis = 0 : "``, np.nanmax(arr, axis ``=` `0``))  ` `    `  `# maximum along the second axis  ` `# axis 1 means horizontal  ` `print``(``"max of arr, axis = 1 : "``, np.nanmax(arr, axis ``=` `1``))  `

Output :

```arr :
[[nan, 17, 12, 33, 44], [15, 6, 27, 8, 19]]

max of arr, axis = None :  44.0
max of arr, axis = 0 :  [15. 17. 27. 33. 44.]
max of arr, axis = 1 :  [44. 27.]
```

Code #3 :

 `import` `numpy as np ` ` `  `arr1 ``=` `np.arange(``5``)  ` `print``(``"Initial arr1 : "``, arr1) ` `  `  `# using out parameter ` `np.nanmax(arr, axis ``=` `0``, out ``=` `arr1) ` `  `  `print``(``"Changed arr1(having results) : "``, arr1)   `

Output :

```Initial arr1 :  [0 1 2 3 4]
Changed arr1(having results) :  [15 17 27 33 44]
```

My Personal Notes arrow_drop_up

Aspire to Inspire before I expire

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.