Skip to content
Related Articles
Non-repeating Primes
• Difficulty Level : Medium
• Last Updated : 27 Jan, 2021

Given an array arr[] containing repetitive prime and nonprime numbers, the task is to find the prime numbers occurring only once.

Examples:

Input: arr[] = {2, 3, 4, 6, 7, 9, 7, 23, 21, 2, 3}
Output: 23
Explanation:
In the given array, 23 is the only prime number which appears once.

Input: arr[] = {17, 19, 7, 5, 29, 5, 2, 2, 7, 17, 19}
Output: 29
Explanation:
In the given array, 29 is the only prime number which appears once.

Naive Approach: To solve the problem mentioned above the solution is to check every element if it is prime. If it is prime, then check is it appears only once or not. Once a prime element with a single occurrence is found, print it.

Time complexity: O(N2)

Efficient Approach: The above approach can be further optimised using Sieve and Hashing algorithm

1. Precompute and store prime numbers using Sieve in a Hash Table.
2. Also create a HashMap to store the numbers with their frequency.
3. Traverse all elements in the array one by one and:
• Check if the current number is prime or not, using the Sieve Hash Table in O(1).
• If the number is prime, then increase its frequency in the HashMap.
4. Traverse the HashMap, and print all the numbers which have the frequency 1.

Below is the implementation of the above approach:

## Java

 `// Java program to find``// Non-repeating Primes` `import` `java.util.*;` `class` `GFG {` `    ``// Function to find count of prime``    ``static` `Vector findPrimes(``        ``int` `arr[], ``int` `n)``    ``{``        ``// Find maximum value in the array``        ``int` `max_val = Arrays``                          ``.stream(arr)``                          ``.max()``                          ``.getAsInt();` `        ``// Find and store all prime numbers``        ``// up to max_val using Sieve` `        ``// Create a boolean array "prime[0..n]".``        ``// A value in prime[i]``        ``// will finally be false``        ``// if i is Not a prime, else true.``        ``Vector prime``            ``= ``new` `Vector<>(max_val + ``1``);` `        ``for` `(``int` `i = ``0``; i < max_val + ``1``; i++)``            ``prime.add(i, Boolean.TRUE);` `        ``// Remaining part of SIEVE``        ``prime.add(``0``, Boolean.FALSE);``        ``prime.add(``1``, Boolean.FALSE);``        ``for` `(``int` `p = ``2``; p * p <= max_val; p++) {` `            ``// If prime[p] is not changed,``            ``// then it is a prime``            ``if` `(prime.get(p) == ``true``) {` `                ``// Update all multiples of p``                ``for` `(``int` `i = p * ``2``;``                     ``i <= max_val;``                     ``i += p)``                    ``prime.add(i, Boolean.FALSE);``            ``}``        ``}` `        ``return` `prime;``    ``}` `    ``// Function to print``    ``// Non-repeating primes``    ``static` `void` `nonRepeatingPrimes(``        ``int` `arr[], ``int` `n)``    ``{` `        ``// Precompute primes using Sieve``        ``Vector prime``            ``= findPrimes(arr, n);` `        ``// Create HashMap to store``        ``// frequency of prime numbers``        ``HashMap mp``            ``= ``new` `HashMap<>();` `        ``// Traverse through array elements and``        ``// Count frequencies of all primes``        ``for` `(``int` `i = ``0``; i < n; i++) {``            ``if` `(prime.get(arr[i]))``                ``if` `(mp.containsKey(arr[i]))``                    ``mp.put(arr[i],``                           ``mp.get(arr[i]) + ``1``);``                ``else``                    ``mp.put(arr[i], ``1``);``        ``}` `        ``// Traverse through map and``        ``// print non repeating primes``        ``for` `(Map.Entry``                 ``entry : mp.entrySet()) {``            ``if` `(entry.getValue() == ``1``)``                ``System.out.println(``                    ``entry.getKey());``        ``}``    ``}` `    ``// Driver code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `arr[] = { ``2``, ``3``, ``4``, ``6``, ``7``, ``9``,``                      ``7``, ``23``, ``21``, ``3` `};``        ``int` `n = arr.length;` `        ``nonRepeatingPrimes(arr, n);``    ``}``}`

## Python3

 `# Python3 program to find``# Non-repeating Primes` `# Function to find count of prime``def` `findPrimes( arr, n):` `    ``# Find maximum value in the array``    ``max_val ``=`  `max``(arr)``    ` `    ``# Find and store all prime numbers``    ``# up to max_val using Sieve``    ``# Create a boolean array "prime[0..n]".``    ``# A value in prime[i]``    ``# will finally be false``    ``# if i is Not a prime, else true.``    ``prime ``=` `[``True` `for` `i ``in` `range``(max_val ``+` `1``)]` `    ``# Remaining part of SIEVE``    ``prime[``0``] ``=` `False``    ``prime[``1``] ``=` `False``    ``p ``=` `2``    ``while``(p ``*` `p <``=` `max_val):` `        ``# If prime[p] is not changed,``        ``# then it is a prime``        ``if` `(prime[p] ``=``=` `True``):``          ` `            ``# Update all multiples of p``            ``for` `i ``in` `range``(p ``*` `2``, max_val ``+` `1``, p): ``                ``prime[i] ``=` `False``        ``p ``+``=` `1`     `    ``return` `prime;` `# Function to print``# Non-repeating primes``def` `nonRepeatingPrimes(arr, n):` `    ``# Precompute primes using Sieve``    ``prime ``=` `findPrimes(arr, n);``    ` `    ``# Create HashMap to store``    ``# frequency of prime numbers``    ``mp ``=` `dict``()` `    ``# Traverse through array elements and``    ``# Count frequencies of all primes``    ``for` `i ``in` `range``(n):  ``        ``if` `(prime[arr[i]]):``            ``if` `(arr[i] ``in` `mp):``                ``mp[arr[i]] ``+``=` `1``            ``else``:``                ``mp[arr[i]] ``=` `1``    ` `    ``# Traverse through map and``    ``# print non repeating primes``    ``for` `entry ``in` `mp.keys():``        ``if` `(mp[entry] ``=``=` `1``):``            ``print``(entry);``    ` `# Driver code``if` `__name__ ``=``=` `'__main__'``:``    ``arr ``=` `[ ``2``, ``3``, ``4``, ``6``, ``7``, ``9``, ``7``, ``23``, ``21``, ``3``]``    ``n ``=` `len``(arr)``    ``nonRepeatingPrimes(arr, n);` `# This code is contributed by pratham76.`

## C#

 `// C# program to find``// Non-repeating Primes``using` `System;``using` `System.Collections;``using` `System.Linq;``using` `System.Collections.Generic;` `class` `GFG{` `// Function to find count of prime``static` `List<``bool``> findPrimes(``int` `[]arr, ``int` `n)``{``    ` `    ``// Find maximum value in the array``    ``int` `max_val = arr.Max();` `    ``// Find and store all prime numbers``    ``// up to max_val using Sieve` `    ``// Create a boolean array "prime[0..n]".``    ``// A value in prime[i]``    ``// will finally be false``    ``// if i is Not a prime, else true.``    ``List<``bool``> prime = ``new` `List<``bool``>(max_val + 1);` `    ``for``(``int` `i = 0; i < max_val + 1; i++)``        ``prime.Add(``true``);` `    ``// Remaining part of SIEVE``    ``prime = ``false``;``    ``prime = ``false``;``    ` `    ``for``(``int` `p = 2; p * p <= max_val; p++)``    ``{``        ` `        ``// If prime[p] is not changed,``        ``// then it is a prime``        ``if` `(prime[p] == ``true``)``        ``{``            ` `            ``// Update all multiples of p``            ``for``(``int` `i = p * 2;``                    ``i <= max_val;``                    ``i += p)``                ``prime[i] = ``false``;``        ``}``    ``}``    ``return` `prime;``}` `// Function to print``// Non-repeating primes``static` `void` `nonRepeatingPrimes(``int` `[]arr, ``int` `n)``{``    ` `    ``// Precompute primes using Sieve``    ``List<``bool``> prime = findPrimes(arr, n);` `    ``// Create HashMap to store``    ``// frequency of prime numbers``    ``Dictionary<``int``,``               ``int``> mp = ``new` `Dictionary<``int``,``                                        ``int``>();` `    ``// Traverse through array elements and``    ``// Count frequencies of all primes``    ``for``(``int` `i = 0; i < n; i++)``    ``{``        ``if` `(prime[arr[i]])``            ``if` `(mp.ContainsKey(arr[i]))``                ``mp[arr[i]]++;``            ``else``                ``mp.Add(arr[i], 1);``    ``}` `    ``// Traverse through map and``    ``// print non repeating primes``    ``foreach``(KeyValuePair<``int``, ``int``> entry ``in` `mp)``    ``{``        ``if` `(entry.Value == 1)``            ``Console.WriteLine(entry.Key);``    ``}``}` `// Driver code``public` `static` `void` `Main(``string``[] args)``{``    ``int` `[]arr = { 2, 3, 4, 6, 7, 9,``                  ``7, 23, 21, 3 };``    ``int` `n = arr.Length;` `    ``nonRepeatingPrimes(arr, n);``}``}` `// This code is contributed by rutvik_56`
Output:
```2
23```

Time complexity: O(O(n*log(log(n))))
Auxiliary Space: O(K), where K is the largest value in the array.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes

My Personal Notes arrow_drop_up