Non-decreasing subsequence of size k with minimum sum
Given a sequence of n integers, you have to find out the non-decreasing subsequence of length k with minimum sum. If no sequence exists output -1.
Examples :
Input : [58 12 11 12 82 30 20 77 16 86], k = 3 Output : 39 {11 + 12 + 16} Input : [58 12 11 12 82 30 20 77 16 86], k = 4 Output : 120 {11 + 12 + 20 + 77} Input : [58 12 11 12 82 30 20 77 16 86], k = 5 Output : 206
Let solve(i, k) be the minimum sum of a subsequence of size k ending at index i. Then there would be two states:
1. Include current element. {solve(j, k-1) + a[i]}
2. Exclude current element. {solve(j, k)}
Our recurrence state would be:
dp[i][k] = min(solve(j, k-1) + a[i], solve(j, k)) if a[i] >= a[j] for all 0 <= j <= i.
C++
// C++ program to find Non-decreasing sequence // of size k with minimum sum #include <bits/stdc++.h> using namespace std; const int MAX = 100; const int inf = 2e9; // Global table used for memoization int dp[MAX][MAX]; void initialize() { for ( int i = 0; i < MAX; i++) for ( int j = 0; j < MAX; j++) dp[i][j] = -1; } int solve( int arr[], int i, int k) { // If already computed if (dp[i][k] != -1) return dp[i][k]; // Corner cases if (i < 0) return inf; if (k == 1) { int ans = inf; for ( int j = 0; j <= i; j++) ans = min(ans, arr[j]); return ans; } // Recursive computation. int ans = inf; for ( int j = 0; j < i; j++) if (arr[i] >= arr[j]) ans = min(ans, min(solve(arr, j, k), solve(arr, j, k - 1) + arr[i])); else { ans = min(ans, solve(arr, j, k)); } dp[i][k] = ans; return dp[i][k]; } // Driver code int main() { initialize(); int a[] = { 58, 12, 11, 12, 82, 30, 20, 77, 16, 86 }; int n = sizeof (a) / sizeof (a[0]); int k = 4; cout << solve(a, n - 1, k) << endl; return 0; } |
Java
// Java program to find Non-decreasing sequence // of size k with minimum sum import java.io.*; import java.util.*; class GFG { public static int MAX = 100 ; public static int inf = 1000000 ; // Table used for memoization public static int [][] dp = new int [MAX][MAX]; // initialize static void initialize() { for ( int i = 0 ; i < MAX; i++) for ( int j = 0 ; j < MAX; j++) dp[i][j] = - 1 ; } // Function to find non-decreasing sequence // of size k with minimum sum static int solve( int arr[], int i, int k) { // If already computed if (dp[i][k] != - 1 ) return dp[i][k]; // Corner cases if (i < 0 ) return inf; if (k == 1 ) { int ans = inf; for ( int j = 0 ; j <= i; j++) ans = Math.min(ans, arr[j]); return ans; } // Recursive computation int ans = inf; for ( int j = 0 ; j < i; j++) if (arr[i] >= arr[j]) ans = Math.min(ans, Math.min(solve(arr, j, k), solve(arr, j, k - 1 ) + arr[i])); else ans = Math.min(ans, solve(arr, j, k)); dp[i][k] = ans; return dp[i][k]; } // driver program public static void main(String[] args) { initialize(); int a[] = { 58 , 12 , 11 , 12 , 82 , 30 , 20 , 77 , 16 , 86 }; int n = a.length; int k = 4 ; System.out.println(solve(a, n - 1 , k)); } } // Contributed by Pramod Kumar |
Python3
# Python program to find Non-decreasing sequence # of size k with minimum sum # Global table used for memoization dp = [] for i in range ( 10 * * 2 + 1 ): temp = [ - 1 ] * ( 10 * * 2 + 1 ) dp.append(temp) def solve(a, i, k): if dp[i][k] ! = - 1 : # Memoization return dp[i][k] elif i < 0 : # out of bounds return float ( 'inf' ) # when there is only one element elif k = = 1 : return min (a[: i + 1 ]) # Else two cases # 1 include current element # solve(a, j, k-1) + a[i] # 2 ignore current element # solve(a, j, k) else : ans = float ( 'inf' ) for j in range (i): if a[i] > = a[j]: ans = min (ans, solve(a, j, k), solve(a, j, k - 1 ) + a[i]) else : ans = min (ans, solve(a, j, k)) dp[i][k] = ans return dp[i][k] # Driver code a = [ 58 , 12 , 11 , 12 , 82 , 30 , 20 , 77 , 16 , 86 ] print (solve(a, len (a) - 1 , 4 )) |
C#
// C# program to find Non-decreasing sequence // of size k with minimum sum using System; class GFG { public static int MAX = 100; public static int inf = 1000000; // Table used for memoization public static int [, ] dp = new int [MAX, MAX]; // initialize static void initialize() { for ( int i = 0; i < MAX; i++) for ( int j = 0; j < MAX; j++) dp[i, j] = -1; } // Function to find non-decreasing // sequence of size k with minimum sum static int solve( int [] arr, int i, int k) { int ans = 0; // If already computed if (dp[i, k] != -1) return dp[i, k]; // Corner cases if (i < 0) return inf; if (k == 1) { ans = inf; for ( int j = 0; j <= i; j++) ans = Math.Min(ans, arr[i]); return ans; } // Recursive computation ans = inf; for ( int j = 0; j < i; j++) if (arr[i] >= arr[j]) ans = Math.Min(ans, Math.Min(solve(arr, j, k), solve(arr, j, k - 1) + arr[i])); else ans = Math.Min(ans, solve(arr, j, k)); dp[i, k] = ans; return dp[i, k]; } // driver program public static void Main() { initialize(); int [] a = { 58, 12, 11, 12, 82, 30, 20, 77, 16, 86 }; int n = a.Length; int k = 4; Console.WriteLine(solve(a, n - 1, k)); } } // This code is contributed by vt_m |
Javascript
<script> // Javascript program to find // Non-decreasing sequence // of size k with minimum sum let MAX = 100; let inf = 1000000; // Table used for memoization let dp = new Array(MAX); for (let i = 0; i < MAX; i++) { dp[i] = new Array(MAX); for (let j = 0; j < MAX; j++) { dp[i][j] = 0; } } // initialize function initialize() { for (let i = 0; i < MAX; i++) for (let j = 0; j < MAX; j++) dp[i][j] = -1; } // Function to find non-decreasing sequence // of size k with minimum sum function solve(arr, i, k) { // If already computed if (dp[i][k] != -1) return dp[i][k]; // Corner cases if (i < 0) return inf; if (k == 1) { let ans = inf; for (let j = 0; j <= i; j++) ans = Math.min(ans, arr[j]); return ans; } // Recursive computation let ans = inf; for (let j = 0; j < i; j++) if (arr[i] >= arr[j]) ans = Math.min(ans, Math.min(solve(arr, j, k), solve(arr, j, k - 1) + arr[i])); else ans = Math.min(ans, solve(arr, j, k)); dp[i][k] = ans; return dp[i][k]; } initialize(); let a = [ 58, 12, 11, 12, 82, 30, 20, 77, 16, 86 ]; let n = a.length; let k = 4; document.write(solve(a, n - 1, k)); </script> |
Output:
120
This article is contributed by Anuj Shah. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.