Skip to content
Related Articles

Related Articles

Improve Article

NLP | Creating Shallow Tree

  • Last Updated : 26 Feb, 2019

Prerequisite: Flattening Deep Tree

We have flattened a Deep Tree by only keeping the lowest level subtrees. But here we can keep the highest level subtrees instead.

Code #1 : Lets’ understand shallow_tree()

from nltk.tree import Tree
def shallow_tree(tree):
        children = []
    for t in tree:
        if t.height() < 3:
        children.append(Tree(t.label(), t.pos()))
    return Tree(tree.label(), children)


Code #2 : Evaluating

from transforms import shallow_tree
from nltk.corpus import treebank
print ("Deep Tree : \n", treebank.parsed_sents()[0])
print ("\nShallow Tree : \n", shallow_tree(treebank.parsed_sents()[0]) )

Output :

Deep Tree : 
    (NP (NNP Pierre) (NNP Vinken))
    (,, )
    (ADJP (NP (CD 61) (NNS years)) (JJ old))
    (,, ))
    (MD will)
      (VB join)
      (NP (DT the) (NN board))
      (PP-CLR (IN as) (NP (DT a) (JJ nonexecutive) (NN director)))
      (NP-TMP (NNP Nov.) (CD 29))))
  (. .))

Shallow Tree :
Tree('S', [Tree('NP-SBJ', [('Pierre', 'NNP'), ('Vinken', 'NNP'), (', ', ', '), 
('61', 'CD'), ('years', 'NNS'), ('old', 'JJ'), (', ', ', ')]),
Tree('VP', [('will', 'MD'), ('join', 'VB'), ('the', 'DT'), ('board', 'NN'), 
('as', 'IN'), ('a', 'DT'), ('nonexecutive', 'JJ'), ('director', 'NN'), 
('Nov.', 'NNP'), ('29', 'CD')]), ('.', '.')])

How it works ?

  • shallow_tree() function creates new child trees by iterating over each of the top-level subtrees.
  • The subtree is replaced by a list of its part-of-speech tagged children, if the height() of a subtree is less than 3.
  • If children of a tree are the part-of-speech tagged leaves, the All other subtrees are replaced by a new Tree.
  • Thus, eliminates all the nested subtrees while still retaining the top-level subtrees.

Code #3 : height

print ("height of tree : "
print ("\nheight of shallow tree : "

Output :

height of tree : 7

height of shallow tree :3

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up
Recommended Articles
Page :