Skip to content
Related Articles

Related Articles

NLP | Brill Tagger

Improve Article
Save Article
  • Last Updated : 05 Jun, 2020
Improve Article
Save Article
  • BrillTagger class is a transformation-based tagger. It is not a subclass of SequentialBackoffTagger.
  • Moreover, it uses a series of rules to correct the results of an initial tagger.
  • These rules it follows are scored based. This score is equal to the no. of errors they correct minus the no. of new errors they produce.

Code #1 : Training a BrillTagger class




# Loading Libraries
from nltk.tag import brill, brill_trainer
  
def train_brill_tagger(initial_tagger, train_sents, **kwargs):
    templates = [
            brill.Template(brill.Pos([-1])),
            brill.Template(brill.Pos([1])),
            brill.Template(brill.Pos([-2])),
            brill.Template(brill.Pos([2])),
            brill.Template(brill.Pos([-2, -1])),
            brill.Template(brill.Pos([1, 2])),
            brill.Template(brill.Pos([-3, -2, -1])),
            brill.Template(brill.Pos([1, 2, 3])),
            brill.Template(brill.Pos([-1]), brill.Pos([1])),
            brill.Template(brill.Word([-1])),
            brill.Template(brill.Word([1])),
            brill.Template(brill.Word([-2])),
            brill.Template(brill.Word([2])),
            brill.Template(brill.Word([-2, -1])),
            brill.Template(brill.Word([1, 2])),
            brill.Template(brill.Word([-3, -2, -1])),
            brill.Template(brill.Word([1, 2, 3])),
            brill.Template(brill.Word([-1]), brill.Word([1])),
            ]
      
    # Using BrillTaggerTrainer to train 
    trainer = brill_trainer.BrillTaggerTrainer(
            initial_tagger, templates, deterministic = True)
      
    return trainer.train(train_sents, **kwargs)

 
Code #2 : Let’s use the trained BrillTagger




from nltk.tag import brill, brill_trainer
from nltk.tag import DefaultTagger
from nltk.corpus import treebank
from tag_util import train_brill_tagger
  
# Initializing
default_tag = DefaultTagger('NN')
  
# initializing training and testing set    
train_data = treebank.tagged_sents()[:3000]
test_data = treebank.tagged_sents()[3000:]
  
initial_tag = backoff_tagger(
        train_data, [UnigramTagger, BigramTagger, 
                    TrigramTagger], backoff = default_tagger)
      
a = initial_tag.evaluate(test_data)
print ("Accuracy of Initial Tag : ", a)

Output :

Accuracy of Initial Tag : 0.8806820634578028

 
Code #3 :




brill_tag = train_brill_tagger(initial_tag, train_data)
b = brill_tag.evaluate(test_data)
  
print ("Accuracy of brill_tag : ", b)

Output :

Accuracy of brill_tag : 0.8827541549751781

My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!