Related Articles

# Newton’s Divided Difference Interpolation Formula

• Difficulty Level : Medium
• Last Updated : 13 Aug, 2019

Interpolation is an estimation of a value within two known values in a sequence of values.

Newton’s divided difference interpolation formula is a interpolation technique used when the interval difference is not same for all sequence of values.

Suppose f(x0), f(x1), f(x2)………f(xn) be the (n+1) values of the function y=f(x) corresponding to the arguments x=x0, x1, x2…xn, where interval differences are not same
Then the first divided difference is given by




The second divided difference is given by




and so on…
Divided differences are symmetric with respect to the arguments i.e independent of the order of arguments.
so,
f[x0, x1]=f[x1, x0]
f[x0, x1, x2]=f[x2, x1, x0]=f[x1, x2, x0]

By using first divided difference, second divided difference as so on .A table is formed which is called the divided difference table.

Divided difference table:

NEWTON’S DIVIDED DIFFERENCE INTERPOLATION FORMULA

Examples:
Input : Value at 7

Output :

Value at 7 is 13.47


## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Below is the implementation for Newton’s divided difference interpolation method.

## C++

 // CPP program for implementing// Newton divided difference formula#include using namespace std;  // Function to find the product termfloat proterm(int i, float value, float x[]){    float pro = 1;    for (int j = 0; j < i; j++) {        pro = pro * (value - x[j]);    }    return pro;}  // Function for calculating// divided difference tablevoid dividedDiffTable(float x[], float y[][10], int n){    for (int i = 1; i < n; i++) {        for (int j = 0; j < n - i; j++) {            y[j][i] = (y[j][i - 1] - y[j + 1]                         [i - 1]) / (x[j] - x[i + j]);        }    }}  // Function for applying Newton's// divided difference formulafloat applyFormula(float value, float x[],                   float y[][10], int n){    float sum = y[0][0];      for (int i = 1; i < n; i++) {      sum = sum + (proterm(i, value, x) * y[0][i]);    }    return sum;}  // Function for displaying // divided difference tablevoid printDiffTable(float y[][10],int n){    for (int i = 0; i < n; i++) {        for (int j = 0; j < n - i; j++) {            cout << setprecision(4) <<                                  y[i][j] << "\t ";        }        cout << "\n";    }}  // Driver Functionint main(){    // number of inputs given    int n = 4;    float value, sum, y[10][10];    float x[] = { 5, 6, 9, 11 };      // y[][] is used for divided difference    // table where y[][0] is used for input    y[0][0] = 12;    y[1][0] = 13;    y[2][0] = 14;    y[3][0] = 16;      // calculating divided difference table    dividedDiffTable(x, y, n);      // displaying divided difference table    printDiffTable(y,n);      // value to be interpolated    value = 7;      // printing the value    cout << "\nValue at " << value << " is "               << applyFormula(value, x, y, n) << endl;    return 0;}

## Java

 // Java program for implementing// Newton divided difference formulaimport java.text.*;import java.math.*;  class GFG{// Function to find the product termstatic float proterm(int i, float value, float x[]){    float pro = 1;    for (int j = 0; j < i; j++) {        pro = pro * (value - x[j]);    }    return pro;}  // Function for calculating// divided difference tablestatic void dividedDiffTable(float x[], float y[][], int n){    for (int i = 1; i < n; i++) {        for (int j = 0; j < n - i; j++) {            y[j][i] = (y[j][i - 1] - y[j + 1]                        [i - 1]) / (x[j] - x[i + j]);        }    }}  // Function for applying Newton's// divided difference formulastatic float applyFormula(float value, float x[],                float y[][], int n){    float sum = y[0][0];      for (int i = 1; i < n; i++) {    sum = sum + (proterm(i, value, x) * y[0][i]);    }    return sum;}  // Function for displaying // divided difference tablestatic void printDiffTable(float y[][],int n){    DecimalFormat df = new DecimalFormat("#.####");    df.setRoundingMode(RoundingMode.HALF_UP);          for (int i = 0; i < n; i++) {        for (int j = 0; j < n - i; j++) {            String str1 = df.format(y[i][j]);            System.out.print(str1+"\t ");        }        System.out.println("");    }}  // Driver Functionpublic static void main(String[] args){    // number of inputs given    int n = 4;    float value, sum;    float y[][]=new float[10][10];    float x[] = { 5, 6, 9, 11 };      // y[][] is used for divided difference    // table where y[][0] is used for input    y[0][0] = 12;    y[1][0] = 13;    y[2][0] = 14;    y[3][0] = 16;      // calculating divided difference table    dividedDiffTable(x, y, n);      // displaying divided difference table    printDiffTable(y,n);      // value to be interpolated    value = 7;      // printing the value    DecimalFormat df = new DecimalFormat("#.##");    df.setRoundingMode(RoundingMode.HALF_UP);          System.out.println("\nValue at "+df.format(value)+" is "            +df.format(applyFormula(value, x, y, n)));}}// This code is contributed by mits

## Python3

 # Python3 program for implementing # Newton divided difference formula   # Function to find the product term def proterm(i, value, x):     pro = 1;     for j in range(i):         pro = pro * (value - x[j]);     return pro;   # Function for calculating # divided difference table def dividedDiffTable(x, y, n):      for i in range(1, n):         for j in range(n - i):             y[j][i] = ((y[j][i - 1] - y[j + 1][i - 1]) /                                     (x[j] - x[i + j]));    return y;  # Function for applying Newton's # divided difference formula def applyFormula(value, x, y, n):       sum = y[0][0];       for i in range(1, n):        sum = sum + (proterm(i, value, x) * y[0][i]);           return sum;   # Function for displaying divided # difference table def printDiffTable(y, n):       for i in range(n):         for j in range(n - i):             print(round(y[i][j], 4), "\t",                                end = " ");           print("");   # Driver Code  # number of inputs given n = 4; y = [[0 for i in range(10)]         for j in range(10)]; x = [ 5, 6, 9, 11 ];   # y[][] is used for divided difference # table where y[][0] is used for input y[0][0] = 12; y[1][0] = 13; y[2][0] = 14; y[3][0] = 16;   # calculating divided difference table y=dividedDiffTable(x, y, n);   # displaying divided difference table printDiffTable(y, n);   # value to be interpolated value = 7;   # printing the value print("\nValue at", value, "is",        round(applyFormula(value, x, y, n), 2))  # This code is contributed by mits

## C#

 // C# program for implementing // Newton divided difference formula using System;  class GFG{ // Function to find the product term static float proterm(int i, float value, float[] x) {     float pro = 1;     for (int j = 0; j < i; j++) {         pro = pro * (value - x[j]);     }     return pro; }   // Function for calculating // divided difference table static void dividedDiffTable(float[] x, float[,] y, int n) {     for (int i = 1; i < n; i++) {         for (int j = 0; j < n - i; j++) {             y[j,i] = (y[j,i - 1] - y[j + 1,i - 1]) / (x[j] - x[i + j]);         }     } }   // Function for applying Newton's // divided difference formula static float applyFormula(float value, float[] x,                 float[,] y, int n) {     float sum = y[0,0];       for (int i = 1; i < n; i++) {     sum = sum + (proterm(i, value, x) * y[0,i]);     }     return sum; }   // Function for displaying // divided difference table static void printDiffTable(float[,] y,int n) {     for (int i = 0; i < n; i++) {         for (int j = 0; j < n - i; j++) {             Console.Write(Math.Round(y[i,j],4)+"\t ");         }         Console.WriteLine("");     } }   // Driver Function public static void Main() {     // number of inputs given     int n = 4;     float value;     float[,] y=new float[10,10];     float[] x = { 5, 6, 9, 11 };       // y[][] is used for divided difference     // table where y[][0] is used for input     y[0,0] = 12;     y[1,0] = 13;     y[2,0] = 14;     y[3,0] = 16;       // calculating divided difference table     dividedDiffTable(x, y, n);       // displaying divided difference table     printDiffTable(y,n);       // value to be interpolated     value = 7;       // printing the value           Console.WriteLine("\nValue at "+(value)+" is "            +Math.Round(applyFormula(value, x, y, n),2)); } } // This code is contributed by mits

## PHP

 

Output:
12     1     -0.1667     0.05
13     0.3333     0.1333
14     1
16

Value at 7 is 13.47


Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up