Nesbitt’s inequality is one of the simplest inequalities in mathematics. According to the statement of the inequality, for any 3 given real numbers they satisfy the mathematical condition,

for all

**Illustrative Examples:**

The 3 numbers satisfying Nesbitts inequality are real numbers.

For a = 1, b = 2, c = 3,

the condition of the inequality

{1 / (2 + 3)} + {2 / (1 + 3)} + {3 / (1 + 2)} >= 1.5 holds true.For a = 1.5, b = 5.6, c = 4.9,

the condition of the inequality

{1.5 / (5.6 + 4.9)} + {5.6 / (1.5 + 4.9)} + {4.9 / (1.5 + 5.6)} >= 1.5 holds true.For a = 4, b = 6, c = 7,

the condition of the inequality

{4 / (6 + 7)} + {6 / (4 + 7)} + {7 / (4 + 6)} >= 1.5 holds true.For a = 459, b = 62, c = 783,

the condition of the inequality

{459 / (62 + 783)} + {62 / (459 + 783)} + {783 / (459 + 62)} >= 1.5 holds true.For a = 9, b = 6, c = 83,

the condition of the inequality

{9 / (6 + 83)} + {6 / (9 + 83)} + {83 / (9 + 6)} >= 1.5 holds true.

## C++

`// CPP code to verify Nesbitt's Inequality` `#include <bits/stdc++.h>` `using` `namespace` `std;` ` ` `bool` `isValidNesbitt(` `double` `a, ` `double` `b, ` `double` `c)` `{` ` ` `// 3 parts of the inequality sum` ` ` `double` `A = a / (b + c);` ` ` `double` `B = b / (a + c);` ` ` `double` `C = c / (a + b);` ` ` `double` `inequality = A + B + C;` ` ` ` ` `return` `(inequality >= 1.5);` `}` ` ` `int` `main()` `{` ` ` `double` `a = 1.0, b = 2.0, c = 3.0;` ` ` `if` `(isValidNesbitt(a, b, c)) ` ` ` `cout << ` `"Nesbitt's inequality satisfied."` ` ` `<< ` `"for real numbers "` `<< a << ` `", "` ` ` `<< b << ` `", "` `<< c << ` `"\n"` `;` ` ` `else` ` ` `cout << ` `"Not satisfied"` `;` ` ` `return` `0;` `}` |

## Java

`// Java code to verify Nesbitt's Inequality` `class` `GFG {` ` ` ` ` `static` `boolean` `isValidNesbitt(` `double` `a,` ` ` `double` `b, ` `double` `c)` ` ` `{` ` ` ` ` `// 3 parts of the inequality sum` ` ` `double` `A = a / (b + c);` ` ` `double` `B = b / (a + c);` ` ` `double` `C = c / (a + b);` ` ` `double` `inequality = A + B + C;` ` ` ` ` `return` `(inequality >= ` `1.5` `);` ` ` `}` ` ` ` ` `// Driver code` ` ` `public` `static` `void` `main(String args[])` ` ` `{` ` ` `double` `a = ` `1.0` `, b = ` `2.0` `, c = ` `3.0` `;` ` ` `if` `(isValidNesbitt(a, b, c) == ` `true` `) ` ` ` `{` ` ` `System.out.print(` `"Nesbitt's inequality"` ` ` `+ ` `" satisfied."` `);` ` ` `System.out.println(` `"for real numbers "` ` ` `+ a + ` `", "` `+ b + ` `", "` `+ c);` ` ` `} ` ` ` `else` ` ` `System.out.println(` `"Nesbitts inequality"` ` ` `+ ` `" not satisfied"` `);` ` ` `}` `}` ` ` `// This code is contributed by JaideepPyne.` |

## Python3

`# Python3 code to verify ` `# Nesbitt's Inequality` ` ` `def` `isValidNesbitt(a, b, c):` ` ` ` ` `# 3 parts of the` ` ` `# inequality sum` ` ` `A ` `=` `a ` `/` `(b ` `+` `c);` ` ` `B ` `=` `b ` `/` `(a ` `+` `c);` ` ` `C ` `=` `c ` `/` `(a ` `+` `b);` ` ` `inequality ` `=` `A ` `+` `B ` `+` `C;` ` ` ` ` `return` `(inequality >` `=` `1.5` `);` ` ` `# Driver Code` `a ` `=` `1.0` `; ` `b ` `=` `2.0` `;` `c ` `=` `3.0` `;` `if` `(isValidNesbitt(a, b, c)):` ` ` `print` `(` `"Nesbitt's inequality satisfied."` `, ` ` ` `" for real numbers "` `,a,` `", "` `,b,` `", "` `,c);` `else` `:` ` ` `print` `(` `"Not satisfied"` `);` ` ` `# This code is contributed by mits` |

## C#

`// C# code to verify ` `// Nesbitt's Inequality` `using` `System;` ` ` `class` `GFG` `{` ` ` `static` `bool` `isValidNesbitt(` `double` `a,` ` ` `double` `b, ` ` ` `double` `c)` ` ` `{` ` ` ` ` `// 3 parts of the` ` ` `// inequality sum` ` ` `double` `A = a / (b + c);` ` ` `double` `B = b / (a + c);` ` ` `double` `C = c / (a + b);` ` ` `double` `inequality = A + B + C;` ` ` ` ` `return` `(inequality >= 1.5);` ` ` `}` ` ` ` ` `// Driver code` ` ` `static` `public` `void` `Main ()` ` ` `{` ` ` `double` `a = 1.0, b = 2.0, c = 3.0;` ` ` `if` `(isValidNesbitt(a, b, c) == ` `true` `) ` ` ` `{` ` ` `Console.Write(` `"Nesbitt's inequality"` `+ ` ` ` `" satisfied "` `);` ` ` `Console.WriteLine(` `"for real numbers "` `+ ` ` ` `a + ` `", "` `+ b + ` `", "` `+ c);` ` ` `} ` ` ` `else` ` ` `Console.WriteLine(` `"Nesbitts inequality"` `+` ` ` `" not satisfied"` `);` ` ` `}` `}` ` ` `// This code is contributed by ajit` |

## PHP

`<?php` `// PHP code to verify ` `// Nesbitt's Inequality` ` ` `function` `isValidNesbitt(` `$a` `, ` `$b` `, ` `$c` `)` `{` ` ` ` ` `// 3 parts of the` ` ` `// inequality sum` ` ` `$A` `= ` `$a` `/ (` `$b` `+ ` `$c` `);` ` ` `$B` `= ` `$b` `/ (` `$a` `+ ` `$c` `);` ` ` `$C` `= ` `$c` `/ (` `$a` `+ ` `$b` `);` ` ` `$inequality` `= ` `$A` `+ ` `$B` `+ ` `$C` `;` ` ` ` ` `return` `(` `$inequality` `>= 1.5);` `}` ` ` ` ` `// Driver Code` ` ` `$a` `= 1.0; ` ` ` `$b` `= 2.0;` ` ` `$c` `= 3.0;` ` ` `if` `(isValidNesbitt(` `$a` `, ` `$b` `, ` `$c` `)) ` ` ` `echo` `"Nesbitt's inequality satisfied."` `, ` ` ` `"for real numbers "` `, ` `$a` `, ` `", "` `, ` `$b` `, ` ` ` `", "` `, ` `$c` `, ` `"\n"` `;` ` ` `else` ` ` `cout <<` `"Not satisfied"` `;` ` ` ` ` `// This code is contributed by Ajit.` `?>` |

**Output :**

Nesbitt's inequality satisfied.for real numbers 1, 2, 3

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.