# Sort a nearly sorted (or K sorted) array

Given an array of n elements, where each element is at most k away from its target position, devise an algorithm that sorts in O(n log k) time. For example, let us consider k is 2, an element at index 7 in the sorted array, can be at indexes 5, 6, 7, 8, 9 in the given array.

Examples:

```Input : arr[] = {6, 5, 3, 2, 8, 10, 9}
k = 3
Output : arr[] = {2, 3, 5, 6, 8, 9, 10}

Input : arr[] = {10, 9, 8, 7, 4, 70, 60, 50}
k = 4
Output : arr[] = {4, 7, 8, 9, 10, 50, 60, 70}
```

## Recommended: Please solve it on “PRACTICE ” first, before moving on to the solution.

We can use Insertion Sort to sort the elements efficiently. Following is the C code for standard Insertion Sort.

 `/* Function to sort an array using insertion sort*/` `void` `insertionSort(``int` `A[], ``int` `size) ` `{ ` `   ``int` `i, key, j; ` `   ``for` `(i = 1; i < size; i++) ` `   ``{ ` `       ``key = A[i]; ` `       ``j = i-1; ` ` `  `       ``/* Move elements of A[0..i-1], that are greater than key, to one  ` `          ``position ahead of their current position. ` `          ``This loop will run at most k times */` `       ``while` `(j >= 0 && A[j] > key) ` `       ``{ ` `           ``A[j+1] = A[j]; ` `           ``j = j-1; ` `       ``} ` `       ``A[j+1] = key; ` `   ``} ` `} `

 `/* Function to sort an array using insertion sort*/` `static` `void` `insertionSort(``int` `A[], ``int` `size)  ` `{  ` `int` `i, key, j;  ` `for` `(i = ``1``; i < size; i++)  ` `{  ` `    ``key = A[i];  ` `    ``j = i-``1``;  ` ` `  `    ``/* Move elements of A[0..i-1], that are greater than key, to one  ` `        ``position ahead of their current position.  ` `        ``This loop will run at most k times */` `    ``while` `(j >= ``0` `&& A[j] > key)  ` `    ``{  ` `        ``A[j+``1``] = A[j];  ` `        ``j = j-``1``;  ` `    ``}  ` `    ``A[j+``1``] = key;  ` `}  ` `}  `

 `# Function to sort an array using ` `# insertion sort ` `def` `insertionSort(A, size): ` `i, key, j ``=` `0``, ``0``, ``0` `for` `i ``in` `range``(size): ` `    ``key ``=` `A[i]  ` `    ``j ``=` `i``-``1` ` `  `    ``# Move elements of A[0..i-1], that are  ` `    ``# greater than key, to one position  ` `    ``# ahead of their current position.  ` `    ``# This loop will run at most k times  ` `    ``while` `j >``=` `0` `and` `A[j] > key: ` `        ``A[j ``+` `1``] ``=` `A[j]  ` `        ``j ``=` `j ``-` `1` `    ``A[j ``+` `1``] ``=` `key `

 `/* C# Function to sort an array using insertion sort*/` `static` `void` `insertionSort(``int` `A[], ``int` `size)  ` `{  ` `    ``int` `i, key, j;  ` `        ``for` `(i = 1; i < size; i++)  ` `        ``{  ` `            ``key = A[i];  ` `            ``j = i-1;  ` ` `  `    ``/* Move elements of A[0..i-1], that are greater than key, to one  ` `        ``position ahead of their current position.  ` `        ``This loop will run at most k times */` `    ``while` `(j >= 0 && A[j] > key)  ` `    ``{  ` `        ``A[j+1] = A[j];  ` `        ``j = j-1;  ` `    ``}  ` `    ``A[j+1] = key;  ` `}  ` `}  `

The inner loop will run at most k times. To move every element to its correct place, at most k elements need to be moved. So overall complexity will be O(nk)

We can sort such arrays more efficiently with the help of Heap data structure. Following is the detailed process that uses Heap.
1) Create a Min Heap of size k+1 with first k+1 elements. This will take O(k) time (See this GFact)
2) One by one remove min element from heap, put it in result array, and add a new element to heap from remaining elements.

Removing an element and adding a new element to min heap will take Logk time. So overall complexity will be O(k) + O((n-k)*logK)

 `// A STL based C++ program to sort a nearly sorted array. ` `#include ` `using` `namespace` `std; ` `  `  `// Given an array of size n, where every element ` `// is k away from its target position, sorts the ` `// array in O(nLogk) time. ` `int` `sortK(``int` `arr[], ``int` `n, ``int` `k) ` `{ ` `    ``// Insert first k+1 items in a priority queue (or min heap) ` `    ``//(A O(k) operation). We assume, k < n. ` `    ``priority_queue<``int``, vector<``int``>, greater<``int``> > pq(arr, arr + k + 1); ` `  `  `    ``// i is index for remaining elements in arr[] and index ` `    ``// is target index of for current minimum element in ` `    ``// Min Heapm 'hp'. ` `    ``int` `index = 0; ` `    ``for` `(``int` `i = k + 1; i < n; i++) { ` `        ``arr[index++] = pq.top(); ` `        ``pq.pop(); ` `        ``pq.push(arr[i]); ` `    ``} ` `  `  `    ``while` `(pq.empty() == ``false``) { ` `        ``arr[index++] = pq.top(); ` `        ``pq.pop(); ` `    ``} ` `} ` `  `  `// A utility function to print array elements ` `void` `printArray(``int` `arr[], ``int` `size) ` `{ ` `    ``for` `(``int` `i = 0; i < size; i++) ` `        ``cout << arr[i] << ``" "``; ` `    ``cout << endl; ` `} ` `  `  `// Driver program to test above functions ` `int` `main() ` `{ ` `    ``int` `k = 3; ` `    ``int` `arr[] = { 2, 6, 3, 12, 56, 8 }; ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr); ` `    ``sortK(arr, n, k); ` `  `  `    ``cout << ``"Following is sorted array"` `<< endl; ` `    ``printArray(arr, n); ` `  `  `    ``return` `0; ` `} `

 `// A java program to sort a nearly sorted array ` `import` `java.util.Iterator; ` `import` `java.util.PriorityQueue; ` ` `  `class` `GFG  ` `{ ` `    ``private` `static` `void` `kSort(``int``[] arr, ``int` `n, ``int` `k)  ` `    ``{ ` ` `  `        ``// min heap ` `        ``PriorityQueue priorityQueue = ``new` `PriorityQueue<>(); ` ` `  `        ``// add first k + 1 items to the min heap ` `        ``for``(``int` `i = ``0``; i < k + ``1``; i++) ` `        ``{ ` `            ``priorityQueue.add(arr[i]); ` `        ``} ` ` `  `        ``int` `index = ``0``; ` `        ``for``(``int` `i = k + ``1``; i < n; i++)  ` `        ``{ ` `            ``arr[index++] = priorityQueue.peek(); ` `            ``priorityQueue.poll(); ` `            ``priorityQueue.add(arr[i]); ` `        ``} ` ` `  `        ``Iterator itr = priorityQueue.iterator(); ` ` `  `        ``while``(itr.hasNext())  ` `        ``{ ` `            ``arr[index++] = priorityQueue.peek(); ` `            ``priorityQueue.poll(); ` `        ``} ` ` `  `    ``} ` ` `  `    ``// A utility function to print the array ` `    ``private` `static` `void` `printArray(``int``[] arr, ``int` `n)  ` `    ``{ ` `        ``for``(``int` `i = ``0``; i < n; i++) ` `            ``System.out.print(arr[i] + ``" "``); ` `    ``} ` ` `  `    ``// Driver Code ` `    ``public` `static` `void` `main(String[] args)  ` `    ``{ ` `        ``int` `k = ``3``; ` `        ``int` `arr[] = { ``2``, ``6``, ``3``, ``12``, ``56``, ``8` `}; ` `        ``int` `n = arr.length; ` `        ``kSort(arr, n, k); ` `        ``System.out.println(``"Following is sorted array"``); ` `        ``printArray(arr, n); ` `    ``} ` `} ` ` `  `// This code is contributed by  ` `// Manpreet Singh(manpreetsngh294) `

 `# A Python3 program to sort a ` `# nearly sorted array. ` ` `  `from` `heapq ``import` `heappop, heappush, heapify ` ` `  ` `  `# A utility function to print  ` `# array elements ` `def` `print_array(arr: ``list``): ` `    ``for` `elem ``in` `arr: ` `        ``print``(elem, end ``=` `' '``) ` ` `  `# Given an array of size n, where every   ` `# element is k away from its target  ` `# position, sorts the array in O(nLogk) time. ` `def` `sort_k(arr: ``list``, n: ``int``, k: ``int``): ` `    ``""" ` `    ``:param arr: input array ` `    ``:param n: length of the array ` `    ``:param k: max distance, which every  ` `     ``element is away from its target position. ` `    ``:return: None ` `    ``"""` `    ``# List of first k+1 items ` `    ``heap ``=` `arr[:k ``+` `1``] ` ` `  `    ``# using heapify to convert list  ` `    ``# into heap(or min heap) ` `    ``heapify(heap) ` ` `  `    ``# "rem_elmnts_index" is index for remaining  ` `    ``# elements in arr and "target_index" is  ` `    ``# target index of for current minimum element  ` `    ``# in Min Heap "heap". ` `    ``target_index ``=` `0` `    ``for` `rem_elmnts_index ``in` `range``(k ``+` `1``, n): ` `        ``arr[target_index] ``=` `heappop(heap) ` `        ``heappush(heap, arr[rem_elmnts_index]) ` `        ``target_index ``+``=` `1` ` `  `    ``while` `heap: ` `        ``arr[target_index] ``=` `heappop(heap) ` `        ``target_index ``+``=` `1` ` `  `# Driver Code ` `k ``=` `3` `arr ``=` `[``2``, ``6``, ``3``, ``12``, ``56``, ``8``] ` `n ``=` `len``(arr) ` `sort_k(arr, n, k) ` ` `  `print``(``'Following is sorted array'``) ` `print_array(arr) ` ` `  `# This code is contributed by  ` `# Veerat Beri(viratberi) `

Output:
```Following is sorted array
2 3 6 8 12 56```

The Min Heap based method takes O(nLogk) time and uses O(k) auxiliary space.

We can also use a Balanced Binary Search Tree instead of Heap to store K+1 elements. The insert and delete operations on Balanced BST also take O(Logk) time. So Balanced BST based method will also take O(nLogk) time, but the Heap bassed method seems to be more efficient as the minimum element will always be at root. Also, Heap doesn’t need extra space for left and right pointers.

Please write comments if you find any of the above codes/algorithms incorrect, or find other ways to solve the same problem.

Article Tags :
Practice Tags :