N/3 repeated number in an array with O(1) space
We are given a read only array of n integers. Find any element that appears more than n/3 times in the array in linear time and constant additional space. If no such element exists, return -1.
Examples:
Input : [10, 10, 20, 30, 10, 10] Output : 10 10 occurs 4 times which is more than 6/3. Input : [20, 30, 10, 10, 5, 4, 20, 1, 2] Output : -1
The idea is based on Moore’s Voting algorithm. We first find two candidates. Then we check if any of these two candidates is actually a majority. Below is the solution for above approach.
C++
// CPP program to find if any element appears // more than n/3. #include <bits/stdc++.h> using namespace std; int appearsNBy3( int arr[], int n) { int count1 = 0, count2 = 0; int first=INT_MAX , second=INT_MAX ; for ( int i = 0; i < n; i++) { // if this element is previously seen, // increment count1. if (first == arr[i]) count1++; // if this element is previously seen, // increment count2. else if (second == arr[i]) count2++; else if (count1 == 0) { count1++; first = arr[i]; } else if (count2 == 0) { count2++; second = arr[i]; } // if current element is different from // both the previously seen variables, // decrement both the counts. else { count1--; count2--; } } count1 = 0; count2 = 0; // Again traverse the array and find the // actual counts. for ( int i = 0; i < n; i++) { if (arr[i] == first) count1++; else if (arr[i] == second) count2++; } if (count1 > n / 3) return first; if (count2 > n / 3) return second; return -1; } int main() { int arr[] = { 1, 2, 3, 1, 1 }; int n = sizeof (arr) / sizeof (arr[0]); cout << appearsNBy3(arr, n) << endl; return 0; } |
Java
// Java program to find if any element appears // more than n/3. class GFG { static int appearsNBy3( int arr[], int n) { int count1 = 0 , count2 = 0 ; // take the integers as the maximum // value of integer hoping the integer // would not be present in the array int first = Integer.MIN_VALUE;; int second = Integer.MAX_VALUE; for ( int i = 0 ; i < n; i++) { // if this element is previously // seen, increment count1. if (first == arr[i]) count1++; // if this element is previously // seen, increment count2. else if (second == arr[i]) count2++; else if (count1 == 0 ) { count1++; first = arr[i]; } else if (count2 == 0 ) { count2++; second = arr[i]; } // if current element is different // from both the previously seen // variables, decrement both the // counts. else { count1--; count2--; } } count1 = 0 ; count2 = 0 ; // Again traverse the array and // find the actual counts. for ( int i = 0 ; i < n; i++) { if (arr[i] == first) count1++; else if (arr[i] == second) count2++; } if (count1 > n / 3 ) return first; if (count2 > n / 3 ) return second; return - 1 ; } // Driver code public static void main(String args[]) { int arr[] = { 1 , 2 , 3 , 1 , 1 }; int n = arr.length; System.out.println(appearsNBy3(arr, n)); } } // This code is contributed by Arnab Kundu |
Python 3
# Python 3 program to find if # any element appears more than # n/3. import sys def appearsNBy3(arr, n): count1 = 0 count2 = 0 first = sys.maxsize second = sys.maxsize for i in range ( 0 , n): # if this element is # previously seen, # increment count1. if (first = = arr[i]): count1 + = 1 # if this element is # previously seen, # increment count2. elif (second = = arr[i]): count2 + = 1 elif (count1 = = 0 ): count1 + = 1 first = arr[i] elif (count2 = = 0 ): count2 + = 1 second = arr[i] # if current element is # different from both # the previously seen # variables, decrement # both the counts. else : count1 - = 1 count2 - = 1 count1 = 0 count2 = 0 # Again traverse the array # and find the actual counts. for i in range ( 0 , n): if (arr[i] = = first): count1 + = 1 elif (arr[i] = = second): count2 + = 1 if (count1 > n / 3 ): return first if (count2 > n / 3 ): return second return - 1 # Driver code arr = [ 1 , 2 , 3 , 1 , 1 ] n = len (arr) print (appearsNBy3(arr, n)) # This code is contributed by # Smitha |
C#
// C# program to find if any element appears // more than n/3. using System; public class GFG { static int appearsNBy3( int []arr, int n) { int count1 = 0, count2 = 0; // take the integers as the maximum // value of integer hoping the integer // would not be present in the array int first = int .MaxValue; int second = int .MaxValue; for ( int i = 1; i < n; i++) { // if this element is previously // seen, increment count1. if (first == arr[i]) count1++; // if this element is previously // seen, increment count2. else if (second == arr[i]) count2++; else if (count1 == 0) { count1++; first = arr[i]; } else if (count2 == 0) { count2++; second = arr[i]; } // if current element is different // from both the previously seen // variables, decrement both the // counts. else { count1--; count2--; } } count1 = 0; count2 = 0; // Again traverse the array and // find the actual counts. for ( int i = 0; i < n; i++) { if (arr[i] == first) count1++; else if (arr[i] == second) count2++; } if (count1 > n / 3) return first; if (count2 > n / 3) return second; return -1; } // Driver code static public void Main(String []args) { int []arr = { 1, 2, 3, 1, 1 }; int n = arr.Length; Console.WriteLine(appearsNBy3(arr, n)); } } // This code is contributed by Arnab Kundu |
PHP
<?php // PHP program to find if any element appears // more than n/3. function appearsNBy3( $arr , $n ) { $count1 = 0; $count2 = 0; $first = PHP_INT_MAX ; $second = PHP_INT_MAX ; for ( $i = 0; $i < $n ; $i ++) { // if this element is previously seen, // increment count1. if ( $first == $arr [ $i ]) $count1 ++; // if this element is previously seen, // increment count2. else if ( $second == $arr [ $i ]) $count2 ++; else if ( $count1 == 0) { $count1 ++; $first = $arr [ $i ]; } else if ( $count2 == 0) { $count2 ++; $second = $arr [ $i ]; } // if current element is different from // both the previously seen variables, // decrement both the counts. else { $count1 --; $count2 --; } } $count1 = 0; $count2 = 0; // Again traverse the array and find the // actual counts. for ( $i = 0; $i < $n ; $i ++) { if ( $arr [ $i ] == $first ) $count1 ++; else if ( $arr [ $i ] == $second ) $count2 ++; } if ( $count1 > $n / 3) return $first ; if ( $count2 > $n / 3) return $second ; return -1; } // Driver code $arr = array ( 1, 2, 3, 1, 1 ); $n = count ( $arr ); echo appearsNBy3( $arr , $n ) ; // This code is contributed by anuj_67. ?> |
Javascript
<script> // Javascript program to find if any element appears more than n/3. function appearsNBy3(arr, n) { let count1 = 0, count2 = 0; // take the integers as the maximum // value of integer hoping the integer // would not be present in the array let first = Number.MAX_VALUE; let second = Number.MAX_VALUE; for (let i = 1; i < n; i++) { // if this element is previously // seen, increment count1. if (first == arr[i]) count1++; // if this element is previously // seen, increment count2. else if (second == arr[i]) count2++; else if (count1 == 0) { count1++; first = arr[i]; } else if (count2 == 0) { count2++; second = arr[i]; } // if current element is different // from both the previously seen // variables, decrement both the // counts. else { count1--; count2--; } } count1 = 0; count2 = 0; // Again traverse the array and // find the actual counts. for (let i = 0; i < n; i++) { if (arr[i] == first) count1++; else if (arr[i] == second) count2++; } if (count1 > parseInt(n / 3, 10)) return first; if (count2 > parseInt(n / 3, 10)) return second; return -1; } let arr = [ 1, 2, 3, 1, 1 ]; let n = arr.length; document.write(appearsNBy3(arr, n)); // This cde is contributed by divyeshrabadiya07. </script> |
Output:
1
Complexity Analysis:
- Time Complexity: O(n)
First pass of the algorithm takes complete traversal over the array contributing to O(n) and another O(n) is consumed in checking if count1 and count2 is greater than floor(n/3) times. - Space Complexity: O(1)
As no extra space is required so space complexity is constant