N-th polite number

A polite number is a positive integer that can be written as the sum of two or more consecutive positive integers. Given N, find the N-th polite number.

Examples:

Input : 4
Output : 7
Explanation: The first 3 are 3(1+2), 5(2+3), 
             6(1+2+3).

Input : 7
Output : 11
Explanation:  3, 5, 6, 7, 9, 10, 11.

There exist an interesting pattern that only powers of 2 are not present in series of Polite numbers. Based on this fact, there exist below formula (Lambek–Moser theorem) for N-th polite number.


Here to find Nth polite number we have to take n as n+1 in the above equation



The inbuilt log function computes log base-e, so dividing it by log base-e 2 will give log base-2 value.

Given below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find Nth polite number
#include <bits/stdc++.h>
using namespace std;
  
// function to evaluate Nth polite number
double polite(double n)
{
    n += 1;
    double base = 2;
    return n + (log((n + (log(n) /
                 log(base))))) / log(base);
}
  
// driver code
int main()
{
    double n = 7;
  
    cout << (int)polite(n);
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for finding N-th polite number
import java.io.*;
  
class GFG {
  
    // function to find N-th polite number
    static double polite(double n)
    {
        n += 1;
        double base = 2;
        return n + (Math.log((n + (Math.log(n) / 
               Math.log(base))))) / Math.log(base);
    }
  
    // driver code
    public static void main(String[] args)
    {
        double n = 7;
        System.out.println((int)polite(n));
    }
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

import math
# function to find Nth polite number 
def Polite(n):
    n = n + 1
    return (int)(n+(math.log((n + math.log(n, 2)), 2))) 
  
# Driver code
n = 7
print Polite(n)
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for finding 
// N-th polite number
using System;
  
class GFG {
  
    // Function to find N-th polite number
    static double polite(double n)
    {
        n += 1;
        double base1 = 2;
        return n + (Math.Log((n + (Math.Log(n) / 
                     Math.Log(base1))))) / 
                     Math.Log(base1);
    }
  
    // Driver code
    public static void Main(String []args)
    {
        double n = 7;
        Console.Write((int)polite(n));
    }
}
  
// This code is contributed by
// Smitha Dinesh Semwal
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find
// Nth polite number
  
// function to evaluate 
// Nth polite number
function polite($n)
{
    $n += 1;
    $base = 2;
    return $n + (log(($n + (log($n) /
                 log($base))))) / log($base);
}
  
// Driver code
$n = 7;
echo((int)polite($n));
  
// This code is contributed by Ajit.
?>
chevron_right


Output:
11

Reference: Wikipedia

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : Smitha Dinesh Semwal, jit_t

Article Tags :